1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
import pandas as pd |
7
|
|
|
import plotly as py |
8
|
|
|
import plotly.graph_objects as go |
9
|
|
|
import plotly.express as px |
10
|
|
|
|
11
|
|
|
from ... import Memory |
12
|
|
|
from ... import Hyperactive |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
class Insight: |
16
|
|
|
def __init__(self, search_config, X, y): |
17
|
|
|
self.search_config = search_config |
18
|
|
|
self.X = X |
19
|
|
|
self.y = y |
20
|
|
|
|
21
|
|
|
def plot_performance(self, runs=3, path=None, optimizers="all"): |
22
|
|
|
if optimizers == "all": |
23
|
|
|
optimizers = [ |
24
|
|
|
"HillClimbing", |
25
|
|
|
"StochasticHillClimbing", |
26
|
|
|
"TabuSearch", |
27
|
|
|
"RandomSearch", |
28
|
|
|
"RandomRestartHillClimbing", |
29
|
|
|
"RandomAnnealing", |
30
|
|
|
"SimulatedAnnealing", |
31
|
|
|
"StochasticTunneling", |
32
|
|
|
"ParallelTempering", |
33
|
|
|
"ParticleSwarm", |
34
|
|
|
"EvolutionStrategy", |
35
|
|
|
"Bayesian", |
36
|
|
|
] |
37
|
|
|
|
38
|
|
|
eval_times = [] |
39
|
|
|
total_times = [] |
40
|
|
|
for run in range(runs): |
41
|
|
|
|
42
|
|
|
eval_time = [] |
43
|
|
|
total_time = [] |
44
|
|
|
for optimizer in optimizers: |
45
|
|
|
opt = Hyperactive(self.X, self.y, memory=False) |
46
|
|
|
opt.search(self.search_config, n_iter=3, optimizer=optimizer) |
47
|
|
|
|
48
|
|
|
eval_time.append(opt.eval_time) |
49
|
|
|
total_time.append(opt.total_time) |
50
|
|
|
|
51
|
|
|
eval_time = np.array(eval_time) |
52
|
|
|
total_time = np.array(total_time) |
53
|
|
|
|
54
|
|
|
eval_times.append(eval_time) |
55
|
|
|
total_times.append(total_time) |
56
|
|
|
|
57
|
|
|
eval_times = np.array(eval_times) |
58
|
|
|
total_times = np.array(total_times) |
59
|
|
|
opt_times = np.subtract(total_times, eval_times) |
60
|
|
|
|
61
|
|
|
opt_time_mean = opt_times.mean(axis=0) |
62
|
|
|
eval_time_mean = eval_times.mean(axis=0) |
63
|
|
|
total_time_mean = total_times.mean(axis=0) |
64
|
|
|
|
65
|
|
|
# opt_time_std = opt_times.std(axis=0) |
66
|
|
|
# eval_time_std = eval_times.std(axis=0) |
67
|
|
|
|
68
|
|
|
eval_time = eval_time_mean / total_time_mean |
69
|
|
|
opt_time = opt_time_mean / total_time_mean |
70
|
|
|
|
71
|
|
|
fig = go.Figure( |
72
|
|
|
data=[ |
73
|
|
|
go.Bar(name="Eval time", x=optimizers, y=eval_time), |
74
|
|
|
go.Bar(name="Opt time", x=optimizers, y=opt_time), |
75
|
|
|
] |
76
|
|
|
) |
77
|
|
|
fig.update_layout(barmode="stack") |
78
|
|
|
py.offline.plot(fig, filename="sampleplot.html") |
79
|
|
|
|
80
|
|
|
def plot_search_path(self, path=None, optimizers=["HillClimbing"]): |
81
|
|
|
for optimizer in optimizers: |
82
|
|
|
opt = Hyperactive(self.X, self.y, memory=False, verbosity=10) |
83
|
|
|
opt.search(self.search_config, n_iter=20, optimizer=optimizer) |
84
|
|
|
|
85
|
|
|
pos_list = opt.pos_list |
86
|
|
|
score_list = opt.score_list |
87
|
|
|
|
88
|
|
|
pos_list = np.array(pos_list) |
89
|
|
|
score_list = np.array(score_list) |
90
|
|
|
|
91
|
|
|
pos_list = np.squeeze(pos_list) |
92
|
|
|
score_list = np.squeeze(score_list) |
93
|
|
|
|
94
|
|
|
df = pd.DataFrame( |
95
|
|
|
{ |
96
|
|
|
"n_neighbors": pos_list[:, 0], |
97
|
|
|
"leaf_size": pos_list[:, 1], |
98
|
|
|
"score": score_list, |
99
|
|
|
} |
100
|
|
|
) |
101
|
|
|
|
102
|
|
|
layout = go.Layout(xaxis=dict(range=[0, 50]), yaxis=dict(range=[0, 50])) |
103
|
|
|
fig = go.Figure( |
104
|
|
|
data=go.Scatter( |
105
|
|
|
x=df["n_neighbors"], |
106
|
|
|
y=df["leaf_size"], |
107
|
|
|
mode="lines+markers", |
108
|
|
|
marker=dict( |
109
|
|
|
size=10, |
110
|
|
|
color=df["score"], |
111
|
|
|
colorscale="Viridis", # one of plotly colorscales |
112
|
|
|
showscale=True, |
113
|
|
|
), |
114
|
|
|
), |
115
|
|
|
layout=layout, |
116
|
|
|
) |
117
|
|
|
|
118
|
|
|
py.offline.plot(fig, filename="search_path" + optimizer + ".html") |
119
|
|
|
|