Conditions | 4 |
Total Lines | 58 |
Code Lines | 43 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | # Author: Simon Blanke |
||
21 | def plot_performance(self, runs=3, path=None, optimizers="all"): |
||
22 | if optimizers == "all": |
||
23 | optimizers = [ |
||
24 | "HillClimbing", |
||
25 | "StochasticHillClimbing", |
||
26 | "TabuSearch", |
||
27 | "RandomSearch", |
||
28 | "RandomRestartHillClimbing", |
||
29 | "RandomAnnealing", |
||
30 | "SimulatedAnnealing", |
||
31 | "StochasticTunneling", |
||
32 | "ParallelTempering", |
||
33 | "ParticleSwarm", |
||
34 | "EvolutionStrategy", |
||
35 | "Bayesian", |
||
36 | ] |
||
37 | |||
38 | eval_times = [] |
||
39 | total_times = [] |
||
40 | for run in range(runs): |
||
41 | |||
42 | eval_time = [] |
||
43 | total_time = [] |
||
44 | for optimizer in optimizers: |
||
45 | opt = Hyperactive(self.X, self.y, memory=False) |
||
46 | opt.search(self.search_config, n_iter=3, optimizer=optimizer) |
||
47 | |||
48 | eval_time.append(opt.eval_time) |
||
49 | total_time.append(opt.total_time) |
||
50 | |||
51 | eval_time = np.array(eval_time) |
||
52 | total_time = np.array(total_time) |
||
53 | |||
54 | eval_times.append(eval_time) |
||
55 | total_times.append(total_time) |
||
56 | |||
57 | eval_times = np.array(eval_times) |
||
58 | total_times = np.array(total_times) |
||
59 | opt_times = np.subtract(total_times, eval_times) |
||
60 | |||
61 | opt_time_mean = opt_times.mean(axis=0) |
||
62 | eval_time_mean = eval_times.mean(axis=0) |
||
63 | total_time_mean = total_times.mean(axis=0) |
||
64 | |||
65 | # opt_time_std = opt_times.std(axis=0) |
||
66 | # eval_time_std = eval_times.std(axis=0) |
||
67 | |||
68 | eval_time = eval_time_mean / total_time_mean |
||
69 | opt_time = opt_time_mean / total_time_mean |
||
70 | |||
71 | fig = go.Figure( |
||
72 | data=[ |
||
73 | go.Bar(name="Eval time", x=optimizers, y=eval_time), |
||
74 | go.Bar(name="Opt time", x=optimizers, y=opt_time), |
||
75 | ] |
||
76 | ) |
||
77 | fig.update_layout(barmode="stack") |
||
78 | py.offline.plot(fig, filename="sampleplot.html") |
||
79 | |||
119 |