1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
from sklearn.datasets import load_iris |
6
|
|
|
|
7
|
|
|
data = load_iris() |
8
|
|
|
X = data.data |
9
|
|
|
y = data.target |
10
|
|
|
|
11
|
|
|
|
12
|
|
|
search_config = { |
13
|
|
|
"sklearn.tree.DecisionTreeClassifier": { |
14
|
|
|
"criterion": ["gini", "entropy"], |
15
|
|
|
"max_depth": range(1, 21), |
16
|
|
|
"min_samples_split": range(2, 21), |
17
|
|
|
"min_samples_leaf": range(1, 21), |
18
|
|
|
} |
19
|
|
|
} |
20
|
|
|
search_config_1 = { |
21
|
|
|
"sklearn.tree.DecisionTreeClassifier": {"max_depth": range(1, 21)}, |
22
|
|
|
"sklearn.neighbors.KNeighborsClassifier": { |
23
|
|
|
"n_neighbors": range(1, 101), |
24
|
|
|
"weights": ["uniform", "distance"], |
25
|
|
|
"p": [1, 2], |
26
|
|
|
}, |
27
|
|
|
} |
28
|
|
|
warm_start = {"sklearn.tree.DecisionTreeClassifier": {"max_depth": [1]}} |
29
|
|
|
|
30
|
|
|
warm_start_1 = { |
31
|
|
|
"sklearn.tree.DecisionTreeClassifier.0": {"max_depth": [1]}, |
32
|
|
|
"sklearn.tree.DecisionTreeClassifier.1": {"max_depth": [2]}, |
33
|
|
|
} |
34
|
|
|
|
35
|
|
|
|
36
|
|
|
def test_multiple_models_one_job(): |
37
|
|
|
|
38
|
|
|
from hyperactive import RandomSearchOptimizer |
39
|
|
|
|
40
|
|
|
opt = RandomSearchOptimizer(search_config_1, 1, n_jobs=1) |
41
|
|
|
opt.fit(X, y) |
42
|
|
|
|
43
|
|
|
|
44
|
|
|
def test_n_jobs_1(): |
45
|
|
|
from hyperactive import RandomSearchOptimizer |
46
|
|
|
|
47
|
|
|
opt = RandomSearchOptimizer(search_config, 1, n_jobs=1) |
48
|
|
|
opt.fit(X, y) |
49
|
|
|
|
50
|
|
|
|
51
|
|
|
def test_n_jobs_2(): |
52
|
|
|
from hyperactive import RandomSearchOptimizer |
53
|
|
|
|
54
|
|
|
opt = RandomSearchOptimizer(search_config, 1, n_jobs=2) |
55
|
|
|
opt.fit(X, y) |
56
|
|
|
|
57
|
|
|
|
58
|
|
|
def test_n_jobs_4(): |
59
|
|
|
from hyperactive import RandomSearchOptimizer |
60
|
|
|
|
61
|
|
|
opt = RandomSearchOptimizer(search_config, 1, n_jobs=4) |
62
|
|
|
opt.fit(X, y) |
63
|
|
|
|
64
|
|
|
|
65
|
|
|
def test_positional_args(): |
66
|
|
|
from hyperactive import RandomSearchOptimizer |
67
|
|
|
|
68
|
|
|
opt0 = RandomSearchOptimizer(search_config, 1, random_state=False) |
69
|
|
|
opt0.fit(X, y) |
70
|
|
|
|
71
|
|
|
opt1 = RandomSearchOptimizer(search_config, n_iter=1, random_state=1) |
72
|
|
|
opt1.fit(X, y) |
73
|
|
|
|
74
|
|
|
opt2 = RandomSearchOptimizer(search_config=search_config, n_iter=1, random_state=1) |
75
|
|
|
opt2.fit(X, y) |
76
|
|
|
|
77
|
|
|
|
78
|
|
|
def test_random_state(): |
79
|
|
|
from hyperactive import RandomSearchOptimizer |
80
|
|
|
|
81
|
|
|
opt0 = RandomSearchOptimizer(search_config, 1, random_state=False) |
82
|
|
|
opt0.fit(X, y) |
83
|
|
|
|
84
|
|
|
opt1 = RandomSearchOptimizer(search_config, 1, random_state=0) |
85
|
|
|
opt1.fit(X, y) |
86
|
|
|
|
87
|
|
|
opt2 = RandomSearchOptimizer(search_config, 1, random_state=1) |
88
|
|
|
opt2.fit(X, y) |
89
|
|
|
|
90
|
|
|
|
91
|
|
|
def test_memory(): |
92
|
|
|
from hyperactive import RandomSearchOptimizer |
93
|
|
|
|
94
|
|
|
opt0 = RandomSearchOptimizer(search_config, 1, memory=True) |
95
|
|
|
opt0.fit(X, y) |
96
|
|
|
|
97
|
|
|
opt1 = RandomSearchOptimizer(search_config, 1, memory=False) |
98
|
|
|
opt1.fit(X, y) |
99
|
|
|
|
100
|
|
|
|
101
|
|
|
def test_verbosity(): |
102
|
|
|
from hyperactive import RandomSearchOptimizer |
103
|
|
|
|
104
|
|
|
opt0 = RandomSearchOptimizer(search_config, 1, verbosity=0) |
105
|
|
|
opt0.fit(X, y) |
106
|
|
|
|
107
|
|
|
opt1 = RandomSearchOptimizer(search_config, 1, verbosity=1) |
108
|
|
|
opt1.fit(X, y) |
109
|
|
|
|
110
|
|
|
|
111
|
|
|
def test_scatter_init(): |
112
|
|
|
from hyperactive import RandomSearchOptimizer |
113
|
|
|
|
114
|
|
|
opt = RandomSearchOptimizer(search_config, 1, n_jobs=1, scatter_init=10) |
115
|
|
|
opt.fit(X, y) |
116
|
|
|
|
117
|
|
|
|
118
|
|
|
def test_scatter_init_and_warm_start(): |
119
|
|
|
from hyperactive import RandomSearchOptimizer |
120
|
|
|
|
121
|
|
|
opt = RandomSearchOptimizer( |
122
|
|
|
search_config, 1, warm_start=warm_start, scatter_init=10 |
123
|
|
|
) |
124
|
|
|
opt.fit(X, y) |
125
|
|
|
|
126
|
|
|
opt = RandomSearchOptimizer( |
127
|
|
|
search_config, 2, warm_start=warm_start, scatter_init=10 |
128
|
|
|
) |
129
|
|
|
opt.fit(X, y) |
130
|
|
|
|
131
|
|
|
|
132
|
|
|
def test_warm_starts(): |
133
|
|
|
from hyperactive import RandomSearchOptimizer |
134
|
|
|
|
135
|
|
|
opt = RandomSearchOptimizer(search_config, 1, n_jobs=1, warm_start=warm_start_1) |
136
|
|
|
opt.fit(X, y) |
137
|
|
|
|
138
|
|
|
|
139
|
|
|
def test_warm_start_multiple_jobs(): |
140
|
|
|
from hyperactive import RandomSearchOptimizer |
141
|
|
|
|
142
|
|
|
opt = RandomSearchOptimizer(search_config, 1, n_jobs=4, warm_start=warm_start) |
143
|
|
|
opt.fit(X, y) |
144
|
|
|
|
145
|
|
|
|
146
|
|
|
def test_warm_start(): |
147
|
|
|
from hyperactive import RandomSearchOptimizer |
148
|
|
|
|
149
|
|
|
opt = RandomSearchOptimizer(search_config, 1, n_jobs=1, warm_start=warm_start) |
150
|
|
|
opt.fit(X, y) |
151
|
|
|
|