Passed
Push — master ( 1a4396...e9038c )
by Simon
01:47
created

tests.test_arguments_api.test_random_state()   A

Complexity

Conditions 1

Size

Total Lines 9
Code Lines 7

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 7
dl 0
loc 9
rs 10
c 0
b 0
f 0
cc 1
nop 0
1
# Author: Simon Blanke
2
# Email: [email protected]
3
# License: MIT License
4
5
import numpy as np
6
7
from sklearn.datasets import load_iris
8
from sklearn.model_selection import cross_val_score
9
from sklearn.tree import DecisionTreeClassifier
10
from hyperactive import Hyperactive
11
12
data = load_iris()
13
X = data.data
14
y = data.target
15
16
17
def model(para, X, y):
18
    model = DecisionTreeClassifier(
19
        max_depth=para["max_depth"],
20
        min_samples_split=para["min_samples_split"],
21
        min_samples_leaf=para["min_samples_leaf"],
22
    )
23
    scores = cross_val_score(model, X, y, cv=3)
24
25
    return scores.mean()
26
27
28
search_config = {
29
    model: {
30
        "max_depth": range(1, 21),
31
        "min_samples_split": range(2, 21),
32
        "min_samples_leaf": range(1, 21),
33
    }
34
}
35
36
37
def test_func_return():
38
    def model1(para, X, y):
39
        model = DecisionTreeClassifier(
40
            criterion=para["criterion"],
41
            max_depth=para["max_depth"],
42
            min_samples_split=para["min_samples_split"],
43
            min_samples_leaf=para["min_samples_leaf"],
44
        )
45
        scores = cross_val_score(model, X, y, cv=3)
46
47
        return scores.mean(), model
48
49
    search_config1 = {
50
        model1: {
51
            "criterion": ["gini", "entropy"],
52
            "max_depth": range(1, 21),
53
            "min_samples_split": range(2, 21),
54
            "min_samples_leaf": range(1, 21),
55
        }
56
    }
57
58
    opt = Hyperactive(X, y)
59
    opt.search(search_config1)
60
61
62
def test_n_jobs_2():
63
    opt = Hyperactive(X, y)
64
    opt.search(search_config, n_jobs=2)
65
66
67
def test_n_jobs_4():
68
    opt = Hyperactive(X, y)
69
    opt.search(search_config, n_jobs=4)
70
71
72
def test_positional_args():
73
    opt0 = Hyperactive(X, y, random_state=False)
74
    opt0.search(search_config)
75
76
    opt1 = Hyperactive(X, y, random_state=1)
77
    opt1.search(search_config)
78
79
    opt2 = Hyperactive(X, y, random_state=1)
80
    opt2.search(search_config)
81
82
83
def test_random_state():
84
    opt0 = Hyperactive(X, y, random_state=False)
85
    opt0.search(search_config)
86
87
    opt1 = Hyperactive(X, y, random_state=0)
88
    opt1.search(search_config)
89
90
    opt2 = Hyperactive(X, y, random_state=1)
91
    opt2.search(search_config)
92
93
94
def test_max_time():
95
    opt0 = Hyperactive(X, y)
96
    opt0.search(search_config, max_time=0.00001)
97
98
99
def test_memory():
100
    opt0 = Hyperactive(X, y, memory=True)
101
    opt0.search(search_config)
102
103
    opt1 = Hyperactive(X, y, memory=False)
104
    opt1.search(search_config)
105
106
    opt2 = Hyperactive(X, y, memory="short")
107
    opt2.search(search_config)
108
109
    opt3 = Hyperactive(X, y, memory="long")
110
    opt3.search(search_config)
111
112
113
def test_verbosity():
114
    opt0 = Hyperactive(X, y, verbosity=0)
115
    opt0.search(search_config)
116
117
    opt0 = Hyperactive(X, y, verbosity=0)
118
    opt0.search(search_config, n_jobs=2)
119
120
    opt1 = Hyperactive(X, y, verbosity=1)
121
    opt1.search(search_config)
122
123
    opt0 = Hyperactive(X, y, verbosity=1)
124
    opt0.search(search_config)
125
126
    opt1 = Hyperactive(X, y, verbosity=2)
127
    opt1.search(search_config)
128
129
    opt1 = Hyperactive(X, y, verbosity=2)
130
    opt1.search(search_config, n_jobs=2)
131
132
133
def test_scatter_init():
134
    init_config = {model: {"scatter_init": 10}}
135
    opt = Hyperactive(X, y)
136
    opt.search(search_config, init_config=init_config)
137
138
139
def test_warm_start():
140
    init_config = {
141
        model: {"max_depth": 10, "min_samples_split": 2, "min_samples_leaf": 5}
142
    }
143
    opt = Hyperactive(X, y, memory=False)
144
    opt.search(search_config, n_iter=0, init_config=init_config)
145
146
    assert opt.results_params[model] == init_config[model]
147
148
149
def test_partial_warm_start():
150
    init_config = {model: {"min_samples_split": 2, "min_samples_leaf": 5}}
151
    opt = Hyperactive(X, y, memory=False)
152
    opt.search(search_config, n_iter=0, init_config=init_config)
153
154
155
def test_optimizer_args():
156
    opt = Hyperactive(X, y)
157
    opt.search(search_config, optimizer={"HillClimbing": {"epsilon": 0.1}})
158
159
160
def test_get_search_path():
161
    opt = Hyperactive(X, y, verbosity=10)
162
    opt.search(search_config)
163
164
    opt = Hyperactive(X, y, verbosity=10)
165
    opt.search(search_config, optimizer="ParticleSwarm")
166
167
168
def test_ray_1():
169
    import ray
170
171
    ray.init()
172
    opt = Hyperactive(X, y)
173
    opt.search(search_config, n_jobs=1)
174
175
176
def test_ray_2():
177
    import ray
178
179
    ray.init()
180
    opt = Hyperactive(X, y)
181
    opt.search(search_config, n_jobs=2)
182