|
1
|
|
|
# Author: Simon Blanke |
|
2
|
|
|
# Email: [email protected] |
|
3
|
|
|
# License: MIT License |
|
4
|
|
|
|
|
5
|
|
|
|
|
6
|
|
|
from .optimizer_attributes import OptimizerAttributes |
|
7
|
|
|
|
|
8
|
|
|
|
|
9
|
|
|
class BaseOptimizationStrategy(OptimizerAttributes): |
|
10
|
|
|
def __init__(self): |
|
11
|
|
|
super().__init__() |
|
12
|
|
|
|
|
13
|
|
|
def setup_search( |
|
14
|
|
|
self, |
|
15
|
|
|
objective_function, |
|
16
|
|
|
s_space, |
|
17
|
|
|
n_iter, |
|
18
|
|
|
initialize, |
|
19
|
|
|
constraints, |
|
20
|
|
|
pass_through, |
|
21
|
|
|
callbacks, |
|
22
|
|
|
catch, |
|
23
|
|
|
max_score, |
|
24
|
|
|
early_stopping, |
|
25
|
|
|
random_state, |
|
26
|
|
|
memory, |
|
27
|
|
|
memory_warm_start, |
|
28
|
|
|
verbosity, |
|
29
|
|
|
): |
|
30
|
|
|
self.objective_function = objective_function |
|
31
|
|
|
self.s_space = s_space |
|
32
|
|
|
self.n_iter = n_iter |
|
33
|
|
|
|
|
34
|
|
|
self.initialize = initialize |
|
35
|
|
|
self.constraints = constraints |
|
36
|
|
|
self.pass_through = pass_through |
|
37
|
|
|
self.callbacks = callbacks |
|
38
|
|
|
self.catch = catch |
|
39
|
|
|
self.max_score = max_score |
|
40
|
|
|
self.early_stopping = early_stopping |
|
41
|
|
|
self.random_state = random_state |
|
42
|
|
|
self.memory = memory |
|
43
|
|
|
self.memory_warm_start = memory_warm_start |
|
44
|
|
|
self.verbosity = verbosity |
|
45
|
|
|
|
|
46
|
|
|
self._max_time = None |
|
47
|
|
|
|
|
48
|
|
|
if "progress_bar" in self.verbosity: |
|
49
|
|
|
self.verbosity = [] |
|
50
|
|
|
else: |
|
51
|
|
|
self.verbosity = [] |
|
52
|
|
|
|
|
53
|
|
|
@property |
|
54
|
|
|
def max_time(self): |
|
55
|
|
|
return self._max_time |
|
56
|
|
|
|
|
57
|
|
|
@max_time.setter |
|
58
|
|
|
def max_time(self, value): |
|
59
|
|
|
self._max_time = value |
|
60
|
|
|
|
|
61
|
|
|
for optimizer_setup in self.optimizer_setup_l: |
|
62
|
|
|
optimizer_setup["optimizer"].max_time = value |
|
63
|
|
|
|
|
64
|
|
|
def search(self, nth_process, p_bar): |
|
65
|
|
|
for optimizer_setup in self.optimizer_setup_l: |
|
66
|
|
|
hyper_opt = optimizer_setup["optimizer"] |
|
67
|
|
|
duration = optimizer_setup["duration"] |
|
68
|
|
|
opt_strat_early_stopping = optimizer_setup["early_stopping"] |
|
69
|
|
|
|
|
70
|
|
|
if opt_strat_early_stopping: |
|
71
|
|
|
early_stopping = opt_strat_early_stopping |
|
72
|
|
|
else: |
|
73
|
|
|
early_stopping = self.early_stopping |
|
74
|
|
|
|
|
75
|
|
|
n_iter = round(self.n_iter * duration / self.duration_sum) |
|
76
|
|
|
|
|
77
|
|
|
# initialize |
|
78
|
|
|
if self.best_para is not None: |
|
79
|
|
|
initialize = {} |
|
80
|
|
|
if "warm_start" in initialize: |
|
81
|
|
|
initialize["warm_start"].append(self.best_para) |
|
82
|
|
|
else: |
|
83
|
|
|
initialize["warm_start"] = [self.best_para] |
|
84
|
|
|
else: |
|
85
|
|
|
initialize = dict(self.initialize) |
|
86
|
|
|
|
|
87
|
|
|
# memory_warm_start |
|
88
|
|
|
if self.search_data is not None: |
|
89
|
|
|
memory_warm_start = self.search_data |
|
90
|
|
|
else: |
|
91
|
|
|
memory_warm_start = self.memory_warm_start |
|
92
|
|
|
|
|
93
|
|
|
# warm_start_smbo |
|
94
|
|
|
if ( |
|
95
|
|
|
hyper_opt.optimizer_class.optimizer_type == "sequential" |
|
96
|
|
|
and self.search_data is not None |
|
97
|
|
|
): |
|
98
|
|
|
hyper_opt.opt_params["warm_start_smbo"] = self.search_data |
|
99
|
|
|
|
|
100
|
|
|
hyper_opt.setup_search( |
|
101
|
|
|
objective_function=self.objective_function, |
|
102
|
|
|
s_space=self.s_space, |
|
103
|
|
|
n_iter=n_iter, |
|
104
|
|
|
initialize=initialize, |
|
105
|
|
|
constraints=self.constraints, |
|
106
|
|
|
pass_through=self.pass_through, |
|
107
|
|
|
callbacks=self.callbacks, |
|
108
|
|
|
catch=self.catch, |
|
109
|
|
|
max_score=self.max_score, |
|
110
|
|
|
early_stopping=early_stopping, |
|
111
|
|
|
random_state=self.random_state, |
|
112
|
|
|
memory=self.memory, |
|
113
|
|
|
memory_warm_start=memory_warm_start, |
|
114
|
|
|
verbosity=self.verbosity, |
|
115
|
|
|
) |
|
116
|
|
|
|
|
117
|
|
|
hyper_opt.search(nth_process, p_bar) |
|
118
|
|
|
|
|
119
|
|
|
self._add_result_attributes( |
|
120
|
|
|
hyper_opt.best_para, |
|
121
|
|
|
hyper_opt.best_score, |
|
122
|
|
|
hyper_opt.best_since_iter, |
|
123
|
|
|
hyper_opt.eval_times, |
|
124
|
|
|
hyper_opt.iter_times, |
|
125
|
|
|
hyper_opt.search_data, |
|
126
|
|
|
hyper_opt.gfo_optimizer.random_seed, |
|
127
|
|
|
) |
|
128
|
|
|
|