1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
from sys import platform |
6
|
|
|
from tqdm import tqdm |
7
|
|
|
|
8
|
|
|
from ._process import _process_ |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
if platform.startswith("linux"): |
12
|
|
|
initializer = tqdm.set_lock |
13
|
|
|
initargs = (tqdm.get_lock(),) |
14
|
|
|
else: |
15
|
|
|
initializer = None |
16
|
|
|
initargs = () |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
def proxy(args): |
20
|
|
|
return _process_(*args) |
21
|
|
|
|
22
|
|
|
|
23
|
|
|
def single_process(process_func, process_infos): |
24
|
|
|
return [process_func(info) for info in process_infos] |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
def multiprocessing_wrapper(process_func, process_infos, n_processes): |
28
|
|
|
import multiprocessing as mp |
29
|
|
|
|
30
|
|
|
process_infos = tuple(process_infos) |
31
|
|
|
|
32
|
|
|
print("\n process_infos ", process_infos) |
33
|
|
|
|
34
|
|
|
with mp.Pool(n_processes, initializer=initializer, initargs=initargs) as pool: |
35
|
|
|
return pool.map(process_func, process_infos) |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
def pathos_wrapper(process_func, search_processes_paras, n_processes): |
39
|
|
|
import pathos.multiprocessing as pmp |
40
|
|
|
|
41
|
|
|
with pmp.Pool(n_processes, initializer=initializer, initargs=initargs) as pool: |
42
|
|
|
return pool.map(process_func, search_processes_paras) |
43
|
|
|
|
44
|
|
|
|
45
|
|
|
def joblib_wrapper(process_func, search_processes_paras, n_processes): |
46
|
|
|
from joblib import Parallel, delayed |
47
|
|
|
|
48
|
|
|
jobs = [delayed(process_func)(*info_dict) for info_dict in search_processes_paras] |
49
|
|
|
return Parallel(n_jobs=n_processes)(jobs) |
50
|
|
|
|
51
|
|
|
|
52
|
|
|
dist_dict = { |
53
|
|
|
"joblib": (joblib_wrapper, _process_), |
54
|
|
|
"multiprocessing": (multiprocessing_wrapper, proxy), |
55
|
|
|
"pathos": (pathos_wrapper, proxy), |
56
|
|
|
} |
57
|
|
|
|
58
|
|
|
|
59
|
|
View Code Duplication |
def _get_distribution(distribution): |
|
|
|
|
60
|
|
|
if hasattr(distribution, "__call__"): |
61
|
|
|
return (distribution, _process_), {} |
62
|
|
|
|
63
|
|
|
elif isinstance(distribution, dict): |
64
|
|
|
dist_key = list(distribution.keys())[0] |
65
|
|
|
dist_paras = list(distribution.values())[0] |
66
|
|
|
|
67
|
|
|
return dist_dict[dist_key], dist_paras |
68
|
|
|
|
69
|
|
|
elif isinstance(distribution, str): |
70
|
|
|
return dist_dict[distribution], {} |
71
|
|
|
|
72
|
|
|
|
73
|
|
|
def run_search(searches, distribution, n_processes): |
74
|
|
|
if n_processes == "auto": |
75
|
|
|
n_processes = len(searches) |
76
|
|
|
|
77
|
|
|
searches_tuple = [(search,) for search in searches] |
78
|
|
|
|
79
|
|
|
if n_processes == 1: |
80
|
|
|
results_list = single_process(_process_, searches) |
81
|
|
|
else: |
82
|
|
|
(distribution, process_func), dist_paras = _get_distribution(distribution) |
83
|
|
|
|
84
|
|
|
results_list = distribution(process_func, searches_tuple, n_processes) |
85
|
|
|
|
86
|
|
|
return results_list |
87
|
|
|
|