| Total Complexity | 11 |
| Total Lines | 54 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | # Author: Simon Blanke |
||
| 2 | # Email: [email protected] |
||
| 3 | # License: MIT License |
||
| 4 | |||
| 5 | import dill |
||
| 6 | import random |
||
| 7 | import numpy as np |
||
| 8 | |||
| 9 | |||
| 10 | class SearchSpace: |
||
| 11 | def __init__(self, _core_, model_nr): |
||
| 12 | self.search_space = _core_.search_config[list(_core_.search_config)[model_nr]] |
||
| 13 | self.pos_space_limit() |
||
| 14 | self.init_type = None |
||
| 15 | |||
| 16 | self.para_names = list(self.search_space.keys()) |
||
| 17 | |||
| 18 | if _core_.init_config: |
||
| 19 | self.init_para = _core_.init_config[list(_core_.init_config)[model_nr]] |
||
| 20 | |||
| 21 | if list(self.init_para.keys())[0] == list(self.search_space.keys())[0]: |
||
| 22 | self.init_type = "warm_start" |
||
| 23 | elif list(self.init_para.keys())[0] == "scatter_init": |
||
| 24 | self.init_type = "scatter_init" |
||
| 25 | |||
| 26 | def pos_space_limit(self): |
||
| 27 | dim = [] |
||
| 28 | |||
| 29 | for pos_key in self.search_space: |
||
| 30 | dim.append(len(self.search_space[pos_key]) - 1) |
||
| 31 | |||
| 32 | self.dim = np.array(dim) |
||
| 33 | |||
| 34 | def get_random_pos(self): |
||
| 35 | pos_new = np.random.uniform(np.zeros(self.dim.shape), self.dim, self.dim.shape) |
||
| 36 | pos = np.rint(pos_new).astype(int) |
||
| 37 | |||
| 38 | return pos |
||
| 39 | |||
| 40 | def get_random_pos_scalar(self, hyperpara_name): |
||
| 41 | n_para_values = len(self.search_space[hyperpara_name]) |
||
| 42 | pos = random.randint(0, n_para_values - 1) |
||
| 43 | |||
| 44 | return pos |
||
| 45 | |||
| 46 | def pos2para(self, pos): |
||
| 47 | if len(self.search_space.keys()) == pos.size: |
||
| 48 | values_dict = {} |
||
| 49 | for i, key in enumerate(self.search_space.keys()): |
||
| 50 | pos_ = int(pos[i]) |
||
| 51 | values_dict[key] = list(self.search_space[key])[pos_] |
||
| 52 | |||
| 53 | return values_dict |
||
| 54 |