1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import time |
6
|
|
|
import numpy as np |
7
|
|
|
|
8
|
|
|
from ..search_space import SearchSpace |
9
|
|
|
from ..model import Model |
10
|
|
|
from ..init_position import InitSearchPosition |
11
|
|
|
from ..extensions.memory import ShortTermMemory, LongTermMemory |
12
|
|
|
|
13
|
|
|
|
14
|
|
|
class Candidate: |
15
|
|
|
def __init__(self, nth_process, _main_args_): |
16
|
|
|
self.start_time = time.time() |
17
|
|
|
self.i = 0 |
18
|
|
|
self._main_args_ = _main_args_ |
19
|
|
|
self.memory = _main_args_.memory |
20
|
|
|
|
21
|
|
|
self._score_best = -np.inf |
22
|
|
|
self.pos_best = None |
23
|
|
|
self.model = None |
24
|
|
|
|
25
|
|
|
self.nth_process = nth_process |
26
|
|
|
model_nr = nth_process % _main_args_.n_models |
27
|
|
|
self.func_ = list(_main_args_.search_config.keys())[model_nr] |
28
|
|
|
self._space_ = SearchSpace(_main_args_, model_nr) |
29
|
|
|
self.func_name = str(self.func_).split(" ")[1] |
30
|
|
|
self._model_ = Model(self.func_, nth_process, _main_args_) |
31
|
|
|
self._init_ = InitSearchPosition(self._space_, self._model_, _main_args_) |
32
|
|
|
|
33
|
|
|
self.eval_time = [] |
34
|
|
|
|
35
|
|
|
if not self.memory: |
36
|
|
|
self.mem = None |
37
|
|
|
self.eval_pos = self.eval_pos_noMem |
38
|
|
|
|
39
|
|
|
elif self.memory == "short": |
40
|
|
|
self.mem = ShortTermMemory(self._space_, _main_args_, self) |
41
|
|
|
self.eval_pos = self.eval_pos_Mem |
42
|
|
|
|
43
|
|
|
elif self.memory == "long": |
44
|
|
|
self.mem = LongTermMemory(self._space_, _main_args_, self) |
45
|
|
|
self.eval_pos = self.eval_pos_Mem |
46
|
|
|
|
47
|
|
|
self.mem.load_memory(self.func_) |
48
|
|
|
|
49
|
|
|
else: |
50
|
|
|
print("Warning: Memory not defined") |
51
|
|
|
self.mem = None |
52
|
|
|
self.eval_pos = self.eval_pos_noMem |
53
|
|
|
|
54
|
|
|
if self.mem: |
55
|
|
|
if self.mem.meta_data_found: |
56
|
|
|
self.pos_best = self.mem.pos_best |
57
|
|
|
self.score_best = self.mem.score_best |
58
|
|
|
|
59
|
|
|
self.pos_best = self._init_._set_start_pos() |
60
|
|
|
self.score_best = self.eval_pos(self.pos_best) |
61
|
|
|
|
62
|
|
|
def _get_warm_start(self): |
63
|
|
|
return self._space_.pos2para(self.pos_best) |
64
|
|
|
|
65
|
|
|
def _process_results(self, _verb_, _opt_args_): |
66
|
|
|
self.total_time = time.time() - self.start_time |
67
|
|
|
start_point = _verb_.print_start_point(self) |
68
|
|
|
|
69
|
|
|
if self._main_args_.memory == "long": |
70
|
|
|
self.mem.save_memory(self._main_args_, _opt_args_, self) |
71
|
|
|
|
72
|
|
|
return start_point |
73
|
|
|
|
74
|
|
|
@property |
75
|
|
|
def score_best(self): |
76
|
|
|
return self._score_best |
77
|
|
|
|
78
|
|
|
@score_best.setter |
79
|
|
|
def score_best(self, value): |
80
|
|
|
self.model_best = self.model |
81
|
|
|
self._score_best = value |
82
|
|
|
|
83
|
|
|
def base_eval(self, pos): |
84
|
|
|
para = self._space_.pos2para(pos) |
85
|
|
|
para["iteration"] = self.i |
86
|
|
|
score, eval_time, self.model = self._model_.train_model(para) |
87
|
|
|
self.eval_time.append(eval_time) |
88
|
|
|
|
89
|
|
|
return score |
90
|
|
|
|
91
|
|
|
def eval_pos_noMem(self, pos): |
92
|
|
|
return self.base_eval(pos) |
93
|
|
|
|
94
|
|
|
def eval_pos_Mem(self, pos, force_eval=False): |
95
|
|
|
pos.astype(int) |
96
|
|
|
pos_str = pos.tostring() |
97
|
|
|
|
98
|
|
|
if pos_str in self.mem.memory_dict and not force_eval: |
99
|
|
|
return self.mem.memory_dict[pos_str] |
100
|
|
|
else: |
101
|
|
|
score = self.base_eval(pos) |
102
|
|
|
self.mem.memory_dict[pos_str] = score |
103
|
|
|
|
104
|
|
|
return score |
105
|
|
|
|