1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import time |
6
|
|
|
import numpy as np |
7
|
|
|
import multiprocessing |
8
|
|
|
|
9
|
|
|
from .base_positioner import BasePositioner |
10
|
|
|
from .verb import VerbosityLVL0, VerbosityLVL1, VerbosityLVL2, VerbosityLVL3 |
11
|
|
|
from .util import init_candidate |
12
|
|
|
from .candidate import Candidate |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
class BaseOptimizer: |
16
|
|
|
def __init__(self, _main_args_, _opt_args_): |
17
|
|
|
self._main_args_ = _main_args_ |
18
|
|
|
self._opt_args_ = _opt_args_ |
19
|
|
|
|
20
|
|
|
self._meta_ = None |
21
|
|
|
|
22
|
|
|
verbs = [VerbosityLVL0, VerbosityLVL1, VerbosityLVL2, VerbosityLVL3] |
23
|
|
|
self._verb_ = verbs[_main_args_.verbosity]() |
24
|
|
|
|
25
|
|
|
self.pos_list = [] |
26
|
|
|
self.score_list = [] |
27
|
|
|
|
28
|
|
|
def _init_base_positioner(self, _cand_, positioner=None): |
29
|
|
|
if positioner: |
30
|
|
|
_p_ = positioner(**self._opt_args_.kwargs_opt) |
31
|
|
|
else: |
32
|
|
|
_p_ = BasePositioner(**self._opt_args_.kwargs_opt) |
33
|
|
|
|
34
|
|
|
_p_.pos_current = _cand_.pos_best |
35
|
|
|
_p_.score_current = _cand_.score_best |
36
|
|
|
|
37
|
|
|
return _p_ |
38
|
|
|
|
39
|
|
|
def _update_pos(self, _cand_, _p_): |
40
|
|
|
_cand_.pos_best = _p_.pos_new |
41
|
|
|
_cand_.score_best = _p_.score_new |
42
|
|
|
|
43
|
|
|
_p_.pos_current = _p_.pos_new |
44
|
|
|
_p_.score_current = _p_.score_new |
45
|
|
|
|
46
|
|
|
self._verb_.best_since_iter = _cand_.i |
47
|
|
|
|
48
|
|
|
return _cand_, _p_ |
49
|
|
|
|
50
|
|
|
def _initialize_search(self, _main_args_, nth_process): |
51
|
|
|
_cand_ = init_candidate(_main_args_, nth_process, Candidate) |
52
|
|
|
self._verb_.init_p_bar(_cand_, self._main_args_) |
53
|
|
|
|
54
|
|
|
_p_ = self._init_opt_positioner(_cand_) |
55
|
|
|
self._verb_.update_p_bar(1, _cand_) |
56
|
|
|
|
57
|
|
|
return _cand_, _p_ |
58
|
|
|
|
59
|
|
|
def _finish_search(self, _main_args_, _cand_): |
60
|
|
|
self._verb_.close_p_bar() |
61
|
|
|
|
62
|
|
|
return _cand_ |
63
|
|
|
|
64
|
|
|
def _search(self, nth_process): |
65
|
|
|
_cand_, _p_ = self._initialize_search(self._main_args_, nth_process) |
66
|
|
|
|
67
|
|
|
for i in range(self._main_args_.n_iter - 1): |
68
|
|
|
_cand_.i = i |
69
|
|
|
_cand_ = self._iterate(i, _cand_, _p_) |
70
|
|
|
self._verb_.update_p_bar(1, _cand_) |
71
|
|
|
|
72
|
|
|
run_time = time.time() - self.start_time |
73
|
|
|
if self._main_args_.max_time and run_time > self._main_args_.max_time: |
74
|
|
|
break |
75
|
|
|
|
76
|
|
|
if self._main_args_.get_search_path: |
77
|
|
|
self._monitor_search_path(_p_) |
78
|
|
|
|
79
|
|
|
_cand_ = self._finish_search(self._main_args_, _cand_) |
80
|
|
|
|
81
|
|
|
return _cand_ |
82
|
|
|
|
83
|
|
|
def _monitor_search_path(self, _p_): |
84
|
|
|
pos_list = [] |
85
|
|
|
score_list = [] |
86
|
|
|
if isinstance(_p_, list): |
87
|
|
|
for p in _p_: |
88
|
|
|
pos_list.append(p.pos_new) |
89
|
|
|
score_list.append(p.score_new) |
90
|
|
|
|
91
|
|
|
pos_list_ = np.array(pos_list) |
92
|
|
|
score_list_ = np.array(score_list) |
93
|
|
|
|
94
|
|
|
self.pos_list.append(pos_list_) |
|
|
|
|
95
|
|
|
self.score_list.append(score_list_) |
|
|
|
|
96
|
|
|
else: |
97
|
|
|
pos_list.append(_p_.pos_new) |
98
|
|
|
score_list.append(_p_.score_new) |
99
|
|
|
|
100
|
|
|
pos_list_ = np.array(pos_list) |
101
|
|
|
score_list_ = np.array(score_list) |
102
|
|
|
|
103
|
|
|
self.pos_list.append(pos_list_) |
104
|
|
|
self.score_list.append(score_list_) |
105
|
|
|
|
106
|
|
|
def _search_multiprocessing(self): |
107
|
|
|
"""Wrapper for the parallel search. Passes integer that corresponds to process number""" |
108
|
|
|
pool = multiprocessing.Pool(self._main_args_.n_jobs) |
109
|
|
|
_cand_list = pool.map(self._search, self._main_args_._n_process_range) |
110
|
|
|
|
111
|
|
|
return _cand_list |
112
|
|
|
|
113
|
|
|
def _run_job(self, nth_process): |
114
|
|
|
_cand_ = self._search(nth_process) |
115
|
|
|
self.results_params[_cand_.func_] = _cand_._process_results( |
116
|
|
|
self._verb_, self._opt_args_ |
117
|
|
|
) |
118
|
|
|
|
119
|
|
|
def _run_multiple_jobs(self): |
120
|
|
|
_cand_list = self._search_multiprocessing() |
121
|
|
|
|
122
|
|
|
for _ in range(int(self._main_args_.n_jobs / 2) + 2): |
123
|
|
|
print("\n") |
124
|
|
|
|
125
|
|
|
for _cand_ in _cand_list: |
126
|
|
|
self.results_params[_cand_.func_] = _cand_._process_results( |
127
|
|
|
self._verb_, self._opt_args_ |
128
|
|
|
) |
129
|
|
|
|
130
|
|
|
def search(self, nth_process=0, rayInit=False): |
131
|
|
|
self.start_time = time.time() |
132
|
|
|
self.results_params = {} |
133
|
|
|
|
134
|
|
|
if rayInit: |
135
|
|
|
self._run_job(nth_process) |
136
|
|
|
elif self._main_args_.n_jobs == 1: |
137
|
|
|
self._run_job(nth_process) |
138
|
|
|
else: |
139
|
|
|
self._run_multiple_jobs() |
140
|
|
|
|
141
|
|
|
return (self.results_params, self.pos_list, self.score_list) |
142
|
|
|
|