| Total Complexity | 1 |
| Total Lines | 56 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | import pytest |
||
| 2 | import numpy as np |
||
| 3 | |||
| 4 | |||
| 5 | from hyperactive import Hyperactive |
||
| 6 | from hyperactive.optimizers.strategies import CustomOptimizationStrategy |
||
| 7 | from hyperactive.optimizers import RandomSearchOptimizer |
||
| 8 | |||
| 9 | from ._parametrize import optimizers |
||
| 10 | |||
| 11 | |||
| 12 | @pytest.mark.parametrize(*optimizers) |
||
| 13 | def test_strategy_early_stopping_0(Optimizer): |
||
| 14 | def objective_function(para): |
||
| 15 | score = -para["x1"] * para["x1"] |
||
| 16 | return score |
||
| 17 | |||
| 18 | search_space = { |
||
| 19 | "x1": list(np.arange(0, 100, 0.1)), |
||
| 20 | } |
||
| 21 | |||
| 22 | n_iter_no_change = 5 |
||
| 23 | early_stopping = { |
||
| 24 | "n_iter_no_change": n_iter_no_change, |
||
| 25 | } |
||
| 26 | |||
| 27 | optimizer1 = Optimizer() |
||
| 28 | optimizer2 = RandomSearchOptimizer() |
||
| 29 | |||
| 30 | opt_strat = CustomOptimizationStrategy() |
||
| 31 | opt_strat.add_optimizer(optimizer1, duration=0.5, early_stopping=early_stopping) |
||
| 32 | opt_strat.add_optimizer(optimizer2, duration=0.5) |
||
| 33 | |||
| 34 | n_iter = 30 |
||
| 35 | |||
| 36 | hyper = Hyperactive() |
||
| 37 | hyper.add_search( |
||
| 38 | objective_function, |
||
| 39 | search_space, |
||
| 40 | optimizer=opt_strat, |
||
| 41 | n_iter=n_iter, |
||
| 42 | initialize={"warm_start": [{"x1": 0}]}, |
||
| 43 | ) |
||
| 44 | hyper.run() |
||
| 45 | |||
| 46 | optimizer1 = hyper.opt_pros[0].optimizer_setup_l[0]["optimizer"] |
||
| 47 | optimizer2 = hyper.opt_pros[0].optimizer_setup_l[1]["optimizer"] |
||
| 48 | |||
| 49 | search_data = optimizer1.search_data |
||
| 50 | n_performed_iter = len(search_data) |
||
| 51 | |||
| 52 | print("\n n_performed_iter \n", n_performed_iter) |
||
| 53 | print("\n n_iter_no_change \n", n_iter_no_change) |
||
| 54 | |||
| 55 | assert n_performed_iter == (n_iter_no_change + 1) |
||
| 56 |