for testing and deploying your application
for finding and fixing issues
for empowering human code reviews
import numpy as np
from hyperactive import Hyperactive
from hyperactive.optimizers.strategies import CustomOptimizationStrategy
from hyperactive.optimizers import (
HillClimbingOptimizer,
RandomSearchOptimizer,
BayesianOptimizer,
)
opt_strat = CustomOptimizationStrategy()
opt_strat.add_optimizer(
RandomSearchOptimizer(), duration=0.5, early_stopping={"n_iter_no_change": 10}
HillClimbingOptimizer(), duration=0.5, early_stopping={"n_iter_no_change": 10}
def objective_function(opt):
score = -opt["x1"] * opt["x1"]
return score, {"additional stuff": 1}
search_space = {"x1": list(np.arange(-100, 101, 1))}
n_iter = 100
optimizer = opt_strat
hyper = Hyperactive()
hyper.add_search(
objective_function,
search_space,
n_iter=n_iter,
n_jobs=1,
optimizer=optimizer,
hyper.run()