Total Complexity | 11 |
Total Lines | 53 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | # Author: Simon Blanke |
||
2 | # Email: [email protected] |
||
3 | # License: MIT License |
||
4 | |||
5 | import random |
||
6 | import numpy as np |
||
7 | |||
8 | |||
9 | class SearchSpace: |
||
10 | def __init__(self, _core_, model_nr): |
||
11 | self.search_space = _core_.search_config[list(_core_.search_config)[model_nr]] |
||
12 | self.pos_space_limit() |
||
13 | self.init_type = None |
||
14 | |||
15 | self.para_names = list(self.search_space.keys()) |
||
16 | |||
17 | if _core_.init_config: |
||
18 | self.init_para = _core_.init_config[list(_core_.init_config)[model_nr]] |
||
19 | |||
20 | if list(self.init_para.keys())[0] == list(self.search_space.keys())[0]: |
||
21 | self.init_type = "warm_start" |
||
22 | elif list(self.init_para.keys())[0] == "scatter_init": |
||
23 | self.init_type = "scatter_init" |
||
24 | |||
25 | def pos_space_limit(self): |
||
26 | dim = [] |
||
27 | |||
28 | for pos_key in self.search_space: |
||
29 | dim.append(len(self.search_space[pos_key]) - 1) |
||
30 | |||
31 | self.dim = np.array(dim) |
||
32 | |||
33 | def get_random_pos(self): |
||
34 | pos_new = np.random.uniform(np.zeros(self.dim.shape), self.dim, self.dim.shape) |
||
35 | pos = np.rint(pos_new).astype(int) |
||
36 | |||
37 | return pos |
||
38 | |||
39 | def get_random_pos_scalar(self, hyperpara_name): |
||
40 | n_para_values = len(self.search_space[hyperpara_name]) |
||
41 | pos = random.randint(0, n_para_values - 1) |
||
42 | |||
43 | return pos |
||
44 | |||
45 | def pos2para(self, pos): |
||
46 | if len(self.search_space.keys()) == pos.size: |
||
47 | values_dict = {} |
||
48 | for i, key in enumerate(self.search_space.keys()): |
||
49 | pos_ = int(pos[i]) |
||
50 | values_dict[key] = list(self.search_space[key])[pos_] |
||
51 | |||
52 | return values_dict |
||
53 |