1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
import numpy as np |
7
|
|
|
|
8
|
|
|
from sklearn.gaussian_process import GaussianProcessRegressor |
9
|
|
|
from sklearn.gaussian_process.kernels import Matern |
10
|
|
|
from sklearn.ensemble import ExtraTreesRegressor as _ExtraTreesRegressor_ |
11
|
|
|
from sklearn.ensemble import ExtraTreesRegressor as _RandomForestRegressor_ |
12
|
|
|
|
13
|
|
|
|
14
|
|
|
def _return_std(X, trees, predictions, min_variance): |
15
|
|
|
std = np.zeros(len(X)) |
16
|
|
|
|
17
|
|
|
for tree in trees: |
18
|
|
|
var_tree = tree.tree_.impurity[tree.apply(X)] |
19
|
|
|
var_tree[var_tree < min_variance] = min_variance |
20
|
|
|
mean_tree = tree.predict(X) |
21
|
|
|
std += var_tree + mean_tree ** 2 |
22
|
|
|
|
23
|
|
|
std /= len(trees) |
24
|
|
|
std -= predictions ** 2.0 |
25
|
|
|
std[std < 0.0] = 0.0 |
26
|
|
|
std = std ** 0.5 |
27
|
|
|
# print("std", std) |
28
|
|
|
return std |
29
|
|
|
|
30
|
|
|
|
31
|
|
|
class TreeEnsembleBase: |
32
|
|
|
def __init__(self, min_variance=0.0, **kwargs): |
33
|
|
|
self.min_variance = min_variance |
34
|
|
|
super().__init__(**kwargs) |
35
|
|
|
|
36
|
|
|
def fit(self, X, y): |
37
|
|
|
super().fit(X, np.ravel(y)) |
38
|
|
|
|
39
|
|
|
def predict(self, X, return_std=False): |
40
|
|
|
mean = super().predict(X) |
41
|
|
|
|
42
|
|
|
if return_std: |
43
|
|
|
if self.criterion != "mse": |
44
|
|
|
raise ValueError( |
45
|
|
|
"Expected impurity to be 'mse', got %s instead" % self.criterion |
46
|
|
|
) |
47
|
|
|
std = _return_std(X, self.estimators_, mean, self.min_variance) |
48
|
|
|
return mean.reshape(-1, 1), std |
49
|
|
|
return mean.reshape(-1, 1) |
50
|
|
|
|
51
|
|
|
|
52
|
|
|
class RandomForestRegressor(TreeEnsembleBase, _RandomForestRegressor_): |
53
|
|
|
def __init__(self, min_variance=0.0, **kwargs): |
54
|
|
|
super().__init__(**kwargs) |
55
|
|
|
|
56
|
|
|
|
57
|
|
|
class ExtraTreesRegressor(TreeEnsembleBase, _ExtraTreesRegressor_): |
58
|
|
|
def __init__(self, min_variance=0.0, **kwargs): |
59
|
|
|
super().__init__(**kwargs) |
60
|
|
|
|
61
|
|
|
|
62
|
|
|
class GPR: |
63
|
|
|
def __init__(self): |
64
|
|
|
self.gpr = GaussianProcessRegressor(kernel=Matern(nu=2.5), normalize_y=True) |
65
|
|
|
|
66
|
|
|
def fit(self, X, y): |
67
|
|
|
self.gpr.fit(X, y) |
68
|
|
|
|
69
|
|
|
def predict(self, X, return_std=False): |
70
|
|
|
return self.gpr.predict(X, return_std=return_std) |
71
|
|
|
|