|
1
|
|
|
# Author: Simon Blanke |
|
2
|
|
|
# Email: [email protected] |
|
3
|
|
|
# License: MIT License |
|
4
|
|
|
|
|
5
|
|
|
import os |
|
6
|
|
|
import time |
|
7
|
|
|
import numpy as np |
|
8
|
|
|
|
|
9
|
|
|
from .search_space import SearchSpace |
|
10
|
|
|
from .model import Model |
|
11
|
|
|
from .init_position import InitSearchPosition |
|
12
|
|
|
|
|
13
|
|
|
from hypermemory import Hypermemory |
|
14
|
|
|
|
|
15
|
|
|
|
|
16
|
|
|
def meta_data_path(): |
|
17
|
|
|
current_path = os.path.realpath(__file__) |
|
18
|
|
|
return current_path.rsplit("/", 1)[0] + "/meta_data/" |
|
19
|
|
|
|
|
20
|
|
|
|
|
21
|
|
|
class ShortTermMemory: |
|
22
|
|
|
def __init__(self, _space_, _main_args_, _cand_): |
|
23
|
|
|
self._space_ = _space_ |
|
24
|
|
|
self._main_args_ = _main_args_ |
|
25
|
|
|
|
|
26
|
|
|
self.pos_best = None |
|
27
|
|
|
self.score_best = -np.inf |
|
28
|
|
|
|
|
29
|
|
|
self.memory_type = _main_args_.memory |
|
30
|
|
|
self.memory_dict = {} |
|
31
|
|
|
self.memory_dict_new = {} |
|
32
|
|
|
|
|
33
|
|
|
self.meta_data_found = False |
|
34
|
|
|
|
|
35
|
|
|
self.n_dims = None |
|
36
|
|
|
|
|
37
|
|
|
|
|
38
|
|
|
class SearchProcess: |
|
39
|
|
|
def __init__(self, nth_process, _main_args_, _info_): |
|
40
|
|
|
self.start_time = time.time() |
|
41
|
|
|
self.i = 0 |
|
42
|
|
|
self._main_args_ = _main_args_ |
|
43
|
|
|
self.memory = _main_args_.memory |
|
44
|
|
|
|
|
45
|
|
|
self.memory_dict = {} |
|
46
|
|
|
self.memory_dict_new = {} |
|
47
|
|
|
|
|
48
|
|
|
self._info_ = _info_() |
|
49
|
|
|
|
|
50
|
|
|
self._score = -np.inf |
|
51
|
|
|
self._pos = None |
|
52
|
|
|
|
|
53
|
|
|
self.score_best = -np.inf |
|
54
|
|
|
self.pos_best = None |
|
55
|
|
|
|
|
56
|
|
|
self.score_list = [] |
|
57
|
|
|
self.pos_list = [] |
|
58
|
|
|
|
|
59
|
|
|
self.nth_process = nth_process |
|
60
|
|
|
model_nr = nth_process % _main_args_.n_models |
|
61
|
|
|
self.func_ = list(_main_args_.search_config.keys())[model_nr] |
|
62
|
|
|
self.search_space = _main_args_.search_config[self.func_] |
|
63
|
|
|
|
|
64
|
|
|
self._space_ = SearchSpace(_main_args_, model_nr) |
|
65
|
|
|
self.func_name = str(self.func_).split(" ")[1] |
|
66
|
|
|
self._model_ = Model(self.func_, nth_process, _main_args_) |
|
67
|
|
|
self._init_ = InitSearchPosition(self._space_, self._model_, _main_args_) |
|
68
|
|
|
|
|
69
|
|
|
self.eval_time = [] |
|
70
|
|
|
self.iter_times = [] |
|
71
|
|
|
|
|
72
|
|
|
if not self.memory: |
|
73
|
|
|
self.mem = None |
|
74
|
|
|
self.eval_pos = self.eval_pos_noMem |
|
75
|
|
|
|
|
76
|
|
|
elif self.memory == "short": |
|
77
|
|
|
self.mem = None |
|
78
|
|
|
self.eval_pos = self.eval_pos_Mem |
|
79
|
|
|
|
|
80
|
|
|
elif self.memory == "long": |
|
81
|
|
|
self.mem = Hypermemory( |
|
82
|
|
|
_main_args_.X, |
|
83
|
|
|
_main_args_.y, |
|
84
|
|
|
self.func_, |
|
85
|
|
|
self.search_space, |
|
86
|
|
|
path=meta_data_path(), |
|
87
|
|
|
) |
|
88
|
|
|
self.eval_pos = self.eval_pos_Mem |
|
89
|
|
|
|
|
90
|
|
|
self.memory_dict = self.mem.load() |
|
91
|
|
|
|
|
92
|
|
|
else: |
|
93
|
|
|
print("Warning: Memory not defined") |
|
94
|
|
|
self.mem = None |
|
95
|
|
|
self.eval_pos = self.eval_pos_noMem |
|
96
|
|
|
|
|
97
|
|
|
if self.mem: |
|
98
|
|
|
if self.mem.meta_data_found: |
|
99
|
|
|
self.pos_best = self.mem.pos_best |
|
100
|
|
|
self.score_best = self.mem.score_best |
|
101
|
|
|
|
|
102
|
|
|
def _init_eval(self): |
|
103
|
|
|
self.pos_best = self._init_._set_start_pos(self._info_) |
|
104
|
|
|
self.score_best = self.eval_pos(self.pos_best) |
|
105
|
|
|
|
|
106
|
|
|
def _get_warm_start(self): |
|
107
|
|
|
return self._space_.pos2para(self.pos_best) |
|
108
|
|
|
|
|
109
|
|
|
def _process_results(self): |
|
110
|
|
|
self.total_time = time.time() - self.start_time |
|
111
|
|
|
start_point = self._info_.print_start_point(self) |
|
112
|
|
|
|
|
113
|
|
|
if self._main_args_.memory == "long": |
|
114
|
|
|
self.mem.dump(self.memory_dict_new, main_args=self._main_args_) |
|
115
|
|
|
|
|
116
|
|
|
return start_point |
|
117
|
|
|
|
|
118
|
|
|
def init_pos(self, n_positions): |
|
119
|
|
|
init_pos_list = [] |
|
120
|
|
|
|
|
121
|
|
|
for i in range(n_positions): |
|
122
|
|
|
init_pos = self._init_._set_start_pos(self._info_) |
|
123
|
|
|
init_pos_list.append(init_pos) |
|
124
|
|
|
|
|
125
|
|
|
return init_pos_list |
|
126
|
|
|
|
|
127
|
|
|
@property |
|
128
|
|
|
def score(self): |
|
129
|
|
|
return self._score |
|
130
|
|
|
|
|
131
|
|
|
@score.setter |
|
132
|
|
|
def score(self, value): |
|
133
|
|
|
self.score_list.append(value) |
|
134
|
|
|
self._score = value |
|
135
|
|
|
|
|
136
|
|
|
@property |
|
137
|
|
|
def pos(self): |
|
138
|
|
|
return self._score |
|
139
|
|
|
|
|
140
|
|
|
@pos.setter |
|
141
|
|
|
def pos(self, value): |
|
142
|
|
|
self.pos_list.append(value) |
|
143
|
|
|
self._pos = value |
|
144
|
|
|
|
|
145
|
|
|
def base_eval(self, pos, p_bar, nth_iter): |
|
146
|
|
|
para = self._space_.pos2para(pos) |
|
147
|
|
|
para["iteration"] = self.i |
|
148
|
|
|
results = self._model_.train_model(para) |
|
149
|
|
|
|
|
150
|
|
|
if results["score"] > self.score_best: |
|
151
|
|
|
self.score_best = results["score"] |
|
152
|
|
|
self.pos_best = pos |
|
153
|
|
|
|
|
154
|
|
|
p_bar.best_since_iter = nth_iter |
|
155
|
|
|
|
|
156
|
|
|
return results |
|
157
|
|
|
|
|
158
|
|
|
def eval_pos_noMem(self, pos, p_bar, nth_iter): |
|
159
|
|
|
results = self.base_eval(pos, p_bar, nth_iter) |
|
160
|
|
|
return results["score"] |
|
161
|
|
|
|
|
162
|
|
|
def eval_pos_Mem(self, pos, p_bar, nth_iter, force_eval=False): |
|
163
|
|
|
pos.astype(int) |
|
164
|
|
|
pos_str = pos.tostring() |
|
165
|
|
|
|
|
166
|
|
|
if pos_str in self.memory_dict and not force_eval: |
|
167
|
|
|
return self.memory_dict[pos_str]["score"] |
|
168
|
|
|
else: |
|
169
|
|
|
results = self.base_eval(pos, p_bar, nth_iter) |
|
170
|
|
|
self.memory_dict[pos_str] = results |
|
171
|
|
|
self.memory_dict_new[pos_str] = results |
|
172
|
|
|
|
|
173
|
|
|
return results["score"] |
|
174
|
|
|
|