Passed
Push — master ( 479869...faee70 )
by Simon
12:46 queued 11s
created

hyperactive.search.Search.search()   A

Complexity

Conditions 3

Size

Total Lines 23
Code Lines 20

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 3
eloc 20
nop 3
dl 0
loc 23
rs 9.4
c 0
b 0
f 0
1
# Author: Simon Blanke
2
# Email: [email protected]
3
# License: MIT License
4
5
import time
6
import numpy as np
7
import multiprocessing
8
9
from .verbosity import set_verbosity
10
11
from .search_process import SearchProcess
12
13
14
from gradient_free_optimizers import (
15
    HillClimbingOptimizer,
16
    StochasticHillClimbingOptimizer,
17
    TabuOptimizer,
18
    RandomSearchOptimizer,
19
    RandomRestartHillClimbingOptimizer,
20
    RandomAnnealingOptimizer,
21
    SimulatedAnnealingOptimizer,
22
    StochasticTunnelingOptimizer,
23
    ParallelTemperingOptimizer,
24
    ParticleSwarmOptimizer,
25
    EvolutionStrategyOptimizer,
26
    BayesianOptimizer,
27
    TreeStructuredParzenEstimators,
28
    DecisionTreeOptimizer,
29
)
30
31
optimizer_dict = {
32
    "HillClimbing": HillClimbingOptimizer,
33
    "StochasticHillClimbing": StochasticHillClimbingOptimizer,
34
    "TabuSearch": TabuOptimizer,
35
    "RandomSearch": RandomSearchOptimizer,
36
    "RandomRestartHillClimbing": RandomRestartHillClimbingOptimizer,
37
    "RandomAnnealing": RandomAnnealingOptimizer,
38
    "SimulatedAnnealing": SimulatedAnnealingOptimizer,
39
    "StochasticTunneling": StochasticTunnelingOptimizer,
40
    "ParallelTempering": ParallelTemperingOptimizer,
41
    "ParticleSwarm": ParticleSwarmOptimizer,
42
    "EvolutionStrategy": EvolutionStrategyOptimizer,
43
    "Bayesian": BayesianOptimizer,
44
    "TPE": TreeStructuredParzenEstimators,
45
    "DecisionTree": DecisionTreeOptimizer,
46
}
47
48
49
class Search:
50
    def __init__(self, _main_args_):
51
        self._main_args_ = _main_args_
52
53
        self._info_, _pbar_ = set_verbosity(_main_args_.verbosity)
54
        self._pbar_ = _pbar_()
55
56
    def search(self, nth_process=0, rayInit=False):
57
        self.start_time = time.time()
58
        self.results = {}
59
        self.eval_times = {}
60
        self.iter_times = {}
61
        self.best_scores = {}
62
        self.pos_list = {}
63
        self.score_list = {}
64
65
        if rayInit:
66
            self._run_job(nth_process)
67
        elif self._main_args_.n_jobs == 1:
68
            self._run_job(nth_process)
69
        else:
70
            self._run_multiple_jobs()
71
72
        return (
73
            self.results,
74
            self.pos_list,
75
            self.score_list,
76
            self.eval_times,
77
            self.iter_times,
78
            self.best_scores,
79
        )
80
81
    def _search_multiprocessing(self):
82
        """Wrapper for the parallel search. Passes integer that corresponds to process number"""
83
        pool = multiprocessing.Pool(self._main_args_.n_jobs)
84
        self.processlist, _p_list = zip(
85
            *pool.map(self._search, self._main_args_._n_process_range)
86
        )
87
88
        return self.processlist, _p_list
89
90
    def _run_job(self, nth_process):
91
        self.process, _p_ = self._search(nth_process)
92
        self._get_attributes(_p_)
93
94
    def _get_attributes(self, _p_):
95
        self.results[self.process.func_] = self.process._process_results()
96
        self.eval_times[self.process.func_] = self.process.eval_time
97
        self.iter_times[self.process.func_] = self.process.iter_times
98
        self.best_scores[self.process.func_] = self.process.score_best
99
100
        if isinstance(_p_, list):
101
            self.pos_list[self.process.func_] = [np.array(p.pos_list) for p in _p_]
102
            self.score_list[self.process.func_] = [np.array(p.score_list) for p in _p_]
103
        else:
104
            self.pos_list[self.process.func_] = [np.array(_p_.pos_list)]
105
            self.score_list[self.process.func_] = [np.array(_p_.score_list)]
106
107
    def _run_multiple_jobs(self):
108
        self.processlist, _p_list = self._search_multiprocessing()
109
110
        for _ in range(int(self._main_args_.n_jobs / 2) + 2):
111
            print("\n")
112
113
        for self.process, _p_ in zip(self.processlist, _p_list):
0 ignored issues
show
Comprehensibility Best Practice introduced by
The variable self does not seem to be defined.
Loading history...
114
            self._get_attributes(_p_)
115
116
    def _search(self, nth_process):
117
        self._initialize_search(self._main_args_, nth_process, self._info_)
118
119
        n_positions = 10
120
121
        init_positions = self.process.init_pos(n_positions)
122
123
        self.opt = optimizer_dict[self._main_args_.optimizer](
124
            init_positions, self.process._space_.dim, self._main_args_.opt_para
125
        )
126
127
        # loop to initialize N positions
128
        for nth_init in range(len(init_positions)):
129
            pos_new = self.opt.init_pos(nth_init)
130
            score_new = self._get_score(pos_new, 0)
131
            self.opt.evaluate(score_new)
132
133
        # loop to do the iterations
134
        for nth_iter in range(len(init_positions), self._main_args_.n_iter):
135
            pos_new = self.opt.iterate(nth_iter)
136
            score_new = self._get_score(pos_new, nth_iter)
137
            self.opt.evaluate(score_new)
138
139
        self._pbar_.close_p_bar()
140
141
        return self.process, self.opt.p_list
142
143
    def _get_score(self, pos_new, nth_iter):
144
        score_new = self.process.eval_pos(pos_new, self._pbar_, nth_iter)
145
        self._pbar_.update_p_bar(1, self.process)
146
147
        if score_new > self.process.score_best:
148
            self.process.score = score_new
149
            self.process.pos = pos_new
150
151
        return score_new
152
153
    def _time_exceeded(self):
154
        run_time = time.time() - self.start_time
155
        return self._main_args_.max_time and run_time > self._main_args_.max_time
156
157
    def _initialize_search(self, _main_args_, nth_process, _info_):
158
        _main_args_._set_random_seed(nth_process)
159
160
        self.process = SearchProcess(nth_process, _main_args_, _info_)
161
        self._pbar_.init_p_bar(nth_process, self._main_args_)
162