| Total Complexity | 1 |
| Total Lines | 43 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | from sklearn.datasets import load_iris |
||
| 2 | from sklearn.model_selection import cross_val_score |
||
| 3 | from sklearn.linear_model import LogisticRegression |
||
| 4 | |||
| 5 | from hyperactive import Hyperactive |
||
| 6 | |||
| 7 | iris_data = load_iris() |
||
| 8 | X = iris_data.data |
||
| 9 | y = iris_data.target |
||
| 10 | |||
| 11 | |||
| 12 | def model(para, X_train, y_train): |
||
| 13 | model = LogisticRegression( |
||
| 14 | C=para["C"], |
||
| 15 | dual=para["dual"], |
||
| 16 | penalty=para["penalty"], |
||
| 17 | solver=para["solver"], |
||
| 18 | multi_class=para["multi_class"], |
||
| 19 | max_iter=para["max_iter"], |
||
| 20 | ) |
||
| 21 | scores = cross_val_score(model, X_train, y_train, cv=3) |
||
| 22 | |||
| 23 | return scores.mean(), model |
||
| 24 | |||
| 25 | |||
| 26 | # this defines the model and hyperparameter search space |
||
| 27 | search_config = { |
||
| 28 | model: { |
||
| 29 | "penalty": ["l1", "l2"], |
||
| 30 | "C": [1e-4, 1e-3, 1e-2, 1e-1, 0.5, 1.0, 5.0, 10.0, 15.0, 20.0, 25.0], |
||
| 31 | "dual": [False], |
||
| 32 | "solver": ["liblinear"], |
||
| 33 | "multi_class": ["auto", "ovr"], |
||
| 34 | "max_iter": range(300, 1000, 10), |
||
| 35 | } |
||
| 36 | } |
||
| 37 | |||
| 38 | |||
| 39 | opt = Hyperactive(search_config, n_iter=100, n_jobs=2) |
||
| 40 | |||
| 41 | # search best hyperparameter for given data |
||
| 42 | opt.fit(X, y) |
||
| 43 |