Total Complexity | 1 |
Total Lines | 43 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | from sklearn.datasets import load_iris |
||
2 | from sklearn.model_selection import cross_val_score |
||
3 | from sklearn.linear_model import LogisticRegression |
||
4 | |||
5 | from hyperactive import Hyperactive |
||
6 | |||
7 | iris_data = load_iris() |
||
8 | X = iris_data.data |
||
9 | y = iris_data.target |
||
10 | |||
11 | |||
12 | def model(para, X_train, y_train): |
||
13 | model = LogisticRegression( |
||
14 | C=para["C"], |
||
15 | dual=para["dual"], |
||
16 | penalty=para["penalty"], |
||
17 | solver=para["solver"], |
||
18 | multi_class=para["multi_class"], |
||
19 | max_iter=para["max_iter"], |
||
20 | ) |
||
21 | scores = cross_val_score(model, X_train, y_train, cv=3) |
||
22 | |||
23 | return scores.mean(), model |
||
24 | |||
25 | |||
26 | # this defines the model and hyperparameter search space |
||
27 | search_config = { |
||
28 | model: { |
||
29 | "penalty": ["l1", "l2"], |
||
30 | "C": [1e-4, 1e-3, 1e-2, 1e-1, 0.5, 1.0, 5.0, 10.0, 15.0, 20.0, 25.0], |
||
31 | "dual": [False], |
||
32 | "solver": ["liblinear"], |
||
33 | "multi_class": ["auto", "ovr"], |
||
34 | "max_iter": range(300, 1000, 10), |
||
35 | } |
||
36 | } |
||
37 | |||
38 | |||
39 | opt = Hyperactive(search_config, n_iter=100, n_jobs=2) |
||
40 | |||
41 | # search best hyperparameter for given data |
||
42 | opt.fit(X, y) |
||
43 |