Completed
Push — master ( b9a0a2...54ed88 )
by Simon
05:27
created

sklearn_GradientBoostingClassifier.model()   A

Complexity

Conditions 1

Size

Total Lines 9
Code Lines 7

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 7
dl 0
loc 9
rs 10
c 0
b 0
f 0
cc 1
nop 3
1
from sklearn.model_selection import cross_val_score
2
from sklearn.ensemble import GradientBoostingClassifier
3
from sklearn.datasets import load_breast_cancer
4
from hyperactive import Hyperactive
5
6
data = load_breast_cancer()
7
X, y = data.data, data.target
8
9
10
def model(para, X_train, y_train):
11
    model = GradientBoostingClassifier(
12
        n_estimators=para["n_estimators"],
13
        max_depth=para["max_depth"],
14
        min_samples_split=para["min_samples_split"],
15
    )
16
    scores = cross_val_score(model, X_train, y_train, cv=3)
17
18
    return scores.mean(), model
19
20
21
# this defines the model and hyperparameter search space
22
search_config = {
23
    model: {
24
        "n_estimators": range(10, 200, 10),
25
        "max_depth": range(2, 12),
26
        "min_samples_split": range(2, 12),
27
    }
28
}
29
30
31
opt = Hyperactive(search_config, n_iter=100, n_jobs=2)
32
33
# search best hyperparameter for given data
34
opt.fit(X, y)
35