Completed
Push — master ( ca1f66...c6b19f )
by Simon
06:31 queued 03:26
created

scatter_init.model()   A

Complexity

Conditions 1

Size

Total Lines 9
Code Lines 7

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 7
dl 0
loc 9
rs 10
c 0
b 0
f 0
cc 1
nop 3
1
from sklearn.model_selection import cross_val_score
2
from sklearn.ensemble import GradientBoostingClassifier
3
from sklearn.datasets import load_iris
4
from hyperactive import Hyperactive
5
6
iris_data = load_iris()
7
X = iris_data.data
8
y = iris_data.target
9
10
def model(para, X_train, y_train):
11
    model = GradientBoostingClassifier(
12
        n_estimators=para["n_estimators"],
13
        max_depth=para["max_depth"],
14
        min_samples_split=para["min_samples_split"],
15
    )
16
    scores = cross_val_score(model, X_train, y_train, cv=3)
17
18
    return scores.mean(), model
19
20
search_config = {
21
    model: {
22
        "n_estimators": range(10, 200, 10),
23
        "max_depth": range(2, 12),
24
        "min_samples_split": range(2, 12),
25
    }
26
}
27
28
# Without scatter initialization
29
opt = SimulatedAnnealingOptimizer(
0 ignored issues
show
Comprehensibility Best Practice introduced by
The variable SimulatedAnnealingOptimizer does not seem to be defined.
Loading history...
30
    search_config, optimizer="HillClimbing", n_iter=20, random_state=0, scatter_init=False
31
)
32
opt.fit(X, y)
33
34
35
# With scatter initialization
36
opt = Hyperactive(
37
    search_config, optimizer="HillClimbing", n_iter=20, random_state=0, scatter_init=True
38
)
39
opt.fit(X, y)
40