1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import json |
6
|
|
|
import glob |
7
|
|
|
|
8
|
|
|
import numpy as np |
9
|
|
|
import pandas as pd |
10
|
|
|
|
11
|
|
|
from functools import partial |
12
|
|
|
|
13
|
|
|
from .memory_io import MemoryIO |
14
|
|
|
from .util import get_model_id |
15
|
|
|
|
16
|
|
|
|
17
|
|
|
def apply_tobytes(df): |
18
|
|
|
return df.values.tobytes() |
19
|
|
|
|
20
|
|
|
|
21
|
|
|
class MemoryLoad(MemoryIO): |
22
|
|
|
def __init__(self, _space_, _main_args_, _cand_): |
23
|
|
|
super().__init__(_space_, _main_args_, _cand_) |
24
|
|
|
|
25
|
|
|
self.pos_best = None |
26
|
|
|
self.score_best = -np.inf |
27
|
|
|
|
28
|
|
|
self.memory_type = _main_args_.memory |
29
|
|
|
self.meta_data_found = False |
30
|
|
|
|
31
|
|
|
self.con_ids = [] |
32
|
|
|
|
33
|
|
|
with open(self.meta_path + "model_connections.json") as f: |
34
|
|
|
self.model_con = json.load(f) |
35
|
|
|
|
36
|
|
|
model_id = get_model_id(_cand_.func_) |
37
|
|
|
if model_id in self.model_con: |
38
|
|
|
self._get_id_list(self.model_con[model_id]) |
39
|
|
|
else: |
40
|
|
|
self.con_ids = [model_id] |
41
|
|
|
|
42
|
|
|
self.con_ids = set(self.con_ids) |
43
|
|
|
|
44
|
|
|
def _get_id_list(self, id_list): |
45
|
|
|
self.con_ids = self.con_ids + id_list |
46
|
|
|
|
47
|
|
|
for id in id_list: |
48
|
|
|
id_list_new = self.model_con[id] |
49
|
|
|
|
50
|
|
|
if set(id_list_new).issubset(self.con_ids): |
51
|
|
|
continue |
52
|
|
|
|
53
|
|
|
self._get_id_list(id_list_new) |
54
|
|
|
|
55
|
|
|
def _load_memory(self, _cand_, _verb_, memory_dict): |
56
|
|
|
self.memory_dict = memory_dict |
57
|
|
|
|
58
|
|
|
para, score = self._read_func_metadata(_cand_.func_, _verb_) |
59
|
|
|
if para is None or score is None: |
60
|
|
|
return {} |
61
|
|
|
|
62
|
|
|
_verb_.load_samples(para) |
63
|
|
|
_cand_.eval_time = list(para["eval_time"]) |
64
|
|
|
|
65
|
|
|
self._load_data_into_memory(para, score) |
66
|
|
|
self.n_dims = len(para.columns) |
67
|
|
|
|
68
|
|
|
return self.memory_dict |
69
|
|
|
|
70
|
|
|
def apply_index(self, pos_key, df): |
71
|
|
|
return ( |
72
|
|
|
self._space_.search_space[pos_key].index(df) |
73
|
|
|
if df in self._space_.search_space[pos_key] |
74
|
|
|
else None |
75
|
|
|
) |
76
|
|
|
|
77
|
|
|
def _read_func_metadata(self, model_func, _verb_): |
78
|
|
|
paths = self._get_func_data_names() |
79
|
|
|
|
80
|
|
|
meta_data_list = [] |
81
|
|
|
for path in paths: |
82
|
|
|
meta_data = pd.read_csv(path) |
83
|
|
|
meta_data_list.append(meta_data) |
84
|
|
|
self.meta_data_found = True |
85
|
|
|
|
86
|
|
|
if len(meta_data_list) > 0: |
87
|
|
|
meta_data = pd.concat(meta_data_list, ignore_index=True) |
88
|
|
|
|
89
|
|
|
column_names = meta_data.columns |
90
|
|
|
score_name = [name for name in column_names if self.score_col_name in name] |
91
|
|
|
|
92
|
|
|
para = meta_data.drop(score_name, axis=1) |
93
|
|
|
score = meta_data[score_name] |
94
|
|
|
|
95
|
|
|
_verb_.load_meta_data() |
96
|
|
|
return para, score |
97
|
|
|
|
98
|
|
|
else: |
99
|
|
|
_verb_.no_meta_data(model_func) |
100
|
|
|
return None, None |
101
|
|
|
|
102
|
|
|
def _get_func_data_names(self): |
103
|
|
|
paths = [] |
104
|
|
|
for id in self.con_ids: |
105
|
|
|
paths = paths + glob.glob( |
106
|
|
|
self.meta_path |
107
|
|
|
+ id |
108
|
|
|
+ "/" |
109
|
|
|
+ (self.feature_hash + "_" + self.label_hash + "_.csv") |
110
|
|
|
) |
111
|
|
|
|
112
|
|
|
return paths |
113
|
|
|
|
114
|
|
|
def para2pos(self, paras): |
115
|
|
|
paras = paras[self._space_.para_names] |
116
|
|
|
pos = paras.copy() |
117
|
|
|
|
118
|
|
|
for pos_key in self._space_.search_space: |
119
|
|
|
apply_index = partial(self.apply_index, pos_key) |
120
|
|
|
pos[pos_key] = paras[pos_key].apply(apply_index) |
121
|
|
|
|
122
|
|
|
pos.dropna(how="any", inplace=True) |
123
|
|
|
pos = pos.astype("int64") |
124
|
|
|
|
125
|
|
|
return pos |
126
|
|
|
|
127
|
|
|
def _load_data_into_memory(self, paras, scores): |
128
|
|
|
paras = paras.replace(self.hash2obj) |
129
|
|
|
pos = self.para2pos(paras) |
130
|
|
|
|
131
|
|
|
if len(pos) == 0: |
132
|
|
|
return |
133
|
|
|
|
134
|
|
|
df_temp = pd.DataFrame() |
135
|
|
|
df_temp["pos_str"] = pos.apply(apply_tobytes, axis=1) |
136
|
|
|
df_temp["score"] = scores |
137
|
|
|
|
138
|
|
|
self.memory_dict = df_temp.set_index("pos_str").to_dict()["score"] |
139
|
|
|
|
140
|
|
|
scores = np.array(scores) |
141
|
|
|
paras = np.array(paras) |
142
|
|
|
|
143
|
|
|
idx = np.argmax(scores) |
144
|
|
|
self.score_best = scores[idx] |
145
|
|
|
self.pos_best = paras[idx] |
146
|
|
|
|