1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import os |
6
|
|
|
import sys |
7
|
|
|
import glob |
8
|
|
|
import json |
9
|
|
|
import shutil |
10
|
|
|
import hashlib |
11
|
|
|
import inspect |
12
|
|
|
|
13
|
|
|
|
14
|
|
|
current_path = os.path.realpath(__file__) |
15
|
|
|
meta_learn_path, _ = current_path.rsplit("/", 1) |
16
|
|
|
meta_path = meta_learn_path + "/meta_data/" |
17
|
|
|
|
18
|
|
|
""" |
19
|
|
|
def get_best_models(X, y): |
20
|
|
|
# TODO: model_dict key:model value:score |
21
|
|
|
|
22
|
|
|
return model_dict |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
def get_model_search_config(model): |
26
|
|
|
# TODO |
27
|
|
|
return search_config |
28
|
|
|
|
29
|
|
|
|
30
|
|
|
def get_model_init_config(model): |
31
|
|
|
# TODO |
32
|
|
|
return init_config |
33
|
|
|
""" |
34
|
|
|
|
35
|
|
|
|
36
|
|
|
def reset_memory(): |
37
|
|
|
if query_yes_no(): |
38
|
|
|
dirs = next(os.walk(meta_path))[1] |
39
|
|
|
for dir in dirs: |
40
|
|
|
shutil.rmtree(meta_path + dir) |
41
|
|
|
|
42
|
|
|
with open(meta_path + "model_connections.json", "w") as f: |
43
|
|
|
json.dump({}, f, indent=4) |
44
|
|
|
|
45
|
|
|
print("Memory reset successful") |
46
|
|
|
|
47
|
|
|
|
48
|
|
|
def query_yes_no(): |
49
|
|
|
valid = {"yes": True, "y": True, "ye": True, "no": False, "n": False} |
50
|
|
|
question = "Delete the entire long term memory?" |
51
|
|
|
|
52
|
|
|
while True: |
53
|
|
|
sys.stdout.write(question + " [y/n] ") |
54
|
|
|
choice = input().lower() |
55
|
|
|
if choice == "": |
56
|
|
|
return False |
57
|
|
|
elif choice in valid: |
58
|
|
|
return valid[choice] |
59
|
|
|
else: |
60
|
|
|
sys.stdout.write("Please respond with 'yes' or 'no' " "(or 'y' or 'n').\n") |
61
|
|
|
|
62
|
|
|
|
63
|
|
|
def delete_model(model): |
64
|
|
|
model_hash = _get_model_hash(model) |
65
|
|
|
path = meta_path + str(model_hash) |
66
|
|
|
|
67
|
|
|
if os.path.exists(path) and os.path.isdir(path): |
68
|
|
|
shutil.rmtree(meta_path + str(model_hash)) |
69
|
|
|
print("Model data successfully removed") |
70
|
|
|
else: |
71
|
|
|
print("Model data not found in memory") |
72
|
|
|
|
73
|
|
|
|
74
|
|
|
def delete_model_dataset(model, X, y): |
75
|
|
|
csv_file = _get_file_path(model, X, y) |
76
|
|
|
|
77
|
|
|
if os.path.exists(csv_file): |
78
|
|
|
os.remove(csv_file) |
79
|
|
|
print("Model data successfully removed") |
80
|
|
|
else: |
81
|
|
|
print("Model data not found in memory") |
82
|
|
|
|
83
|
|
|
|
84
|
|
|
def connect_model_IDs(model1, model2): |
85
|
|
|
# do checks if search space has same dim |
86
|
|
|
|
87
|
|
|
with open(meta_path + "model_connections.json") as f: |
88
|
|
|
data = json.load(f) |
89
|
|
|
|
90
|
|
|
model1_hash = _get_model_hash(model1) |
91
|
|
|
model2_hash = _get_model_hash(model2) |
92
|
|
|
|
93
|
|
|
if model1_hash in data: |
94
|
|
|
key_model = model1_hash |
95
|
|
|
value_model = model2_hash |
96
|
|
|
data = _connect_key2value(data, key_model, value_model) |
97
|
|
|
else: |
98
|
|
|
data[model1_hash] = [model2_hash] |
99
|
|
|
print("IDs successfully connected") |
100
|
|
|
|
101
|
|
|
if model2_hash in data: |
102
|
|
|
key_model = model2_hash |
103
|
|
|
value_model = model1_hash |
104
|
|
|
data = _connect_key2value(data, key_model, value_model) |
105
|
|
|
else: |
106
|
|
|
data[model2_hash] = [model1_hash] |
107
|
|
|
print("IDs successfully connected") |
108
|
|
|
|
109
|
|
|
with open(meta_path + "model_connections.json", "w") as f: |
110
|
|
|
json.dump(data, f, indent=4) |
111
|
|
|
|
112
|
|
|
|
113
|
|
|
def _connect_key2value(data, key_model, value_model): |
114
|
|
|
if value_model in data[key_model]: |
115
|
|
|
print("IDs of models are already connected") |
116
|
|
|
else: |
117
|
|
|
data[key_model].append(value_model) |
118
|
|
|
print("IDs successfully connected") |
119
|
|
|
|
120
|
|
|
return data |
121
|
|
|
|
122
|
|
|
|
123
|
|
|
def _split_key_value(data, key_model, value_model): |
124
|
|
|
if value_model in data[key_model]: |
125
|
|
|
data[key_model].remove(value_model) |
126
|
|
|
|
127
|
|
|
if len(data[key_model]) == 0: |
128
|
|
|
del data[key_model] |
129
|
|
|
print("ID connection successfully deleted") |
130
|
|
|
else: |
131
|
|
|
print("IDs of models are not connected") |
132
|
|
|
|
133
|
|
|
return data |
134
|
|
|
|
135
|
|
|
|
136
|
|
|
def split_model_IDs(model1, model2): |
137
|
|
|
# TODO: do checks if search space has same dim |
138
|
|
|
|
139
|
|
|
with open(meta_path + "model_connections.json") as f: |
140
|
|
|
data = json.load(f) |
141
|
|
|
|
142
|
|
|
model1_hash = _get_model_hash(model1) |
143
|
|
|
model2_hash = _get_model_hash(model2) |
144
|
|
|
|
145
|
|
|
if model1_hash in data: |
146
|
|
|
key_model = model1_hash |
147
|
|
|
value_model = model2_hash |
148
|
|
|
data = _split_key_value(data, key_model, value_model) |
149
|
|
|
else: |
150
|
|
|
print("IDs of models are not connected") |
151
|
|
|
|
152
|
|
|
if model2_hash in data: |
153
|
|
|
key_model = model2_hash |
154
|
|
|
value_model = model1_hash |
155
|
|
|
data = _split_key_value(data, key_model, value_model) |
156
|
|
|
else: |
157
|
|
|
print("IDs of models are not connected") |
158
|
|
|
|
159
|
|
|
with open(meta_path + "model_connections.json", "w") as f: |
160
|
|
|
json.dump(data, f, indent=4) |
161
|
|
|
|
162
|
|
|
|
163
|
|
|
def _get_file_path(model, X, y): |
164
|
|
|
func_path_ = _get_model_hash(model) + "/" |
165
|
|
|
func_path = meta_path + func_path_ |
166
|
|
|
|
167
|
|
|
feature_hash = _get_hash(X) |
168
|
|
|
label_hash = _get_hash(y) |
169
|
|
|
|
170
|
|
|
return func_path + (feature_hash + "_" + label_hash + "_.csv") |
171
|
|
|
|
172
|
|
|
|
173
|
|
|
def _get_model_hash(model): |
174
|
|
|
return str(_get_hash(_get_func_str(model).encode("utf-8"))) |
175
|
|
|
|
176
|
|
|
|
177
|
|
|
def _get_func_str(func): |
178
|
|
|
return inspect.getsource(func) |
179
|
|
|
|
180
|
|
|
|
181
|
|
|
def _get_hash(object): |
182
|
|
|
return hashlib.sha1(object).hexdigest() |
183
|
|
|
|