Total Complexity | 4 |
Total Lines | 37 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | # Author: Simon Blanke |
||
2 | # Email: [email protected] |
||
3 | # License: MIT License |
||
4 | |||
5 | |||
6 | from sklearn.model_selection import cross_validate |
||
7 | from sklearn.utils.validation import _num_samples |
||
8 | |||
9 | |||
10 | class ObjectiveFunctionAdapter: |
||
11 | def __init__(self, estimator) -> None: |
||
12 | self.estimator = estimator |
||
13 | |||
14 | def add_dataset(self, X, y): |
||
15 | self.X = X |
||
16 | self.y = y |
||
17 | |||
18 | def add_validation(self, scoring, cv): |
||
19 | self.scoring = scoring |
||
20 | self.cv = cv |
||
21 | |||
22 | def objective_function(self, params): |
||
23 | cv_results = cross_validate( |
||
24 | self.estimator, |
||
25 | self.X, |
||
26 | self.y, |
||
27 | cv=self.cv, |
||
28 | ) |
||
29 | |||
30 | add_info_d = { |
||
31 | "score_time": cv_results["score_time"], |
||
32 | "fit_time": cv_results["fit_time"], |
||
33 | "n_test_samples": _num_samples(self.X), |
||
34 | } |
||
35 | |||
36 | return cv_results["test_score"].mean(), add_info_d |
||
37 |