1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
import pandas as pd |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
class HyperGradientConv: |
10
|
|
|
def __init__(self, s_space): |
11
|
|
|
self.s_space = s_space |
12
|
|
|
|
13
|
|
|
def value2position(self, value: list) -> list: |
14
|
|
|
position = [] |
15
|
|
|
for n, space_dim in enumerate(self.s_space.values_l): |
16
|
|
|
pos = np.abs(value[n] - np.array(space_dim)).argmin() |
17
|
|
|
position.append(int(pos)) |
18
|
|
|
|
19
|
|
|
return position |
20
|
|
|
|
21
|
|
|
def value2para(self, value: list) -> dict: |
22
|
|
|
para = {} |
23
|
|
|
for key, p_ in zip(self.s_space.dim_keys, value): |
24
|
|
|
para[key] = p_ |
25
|
|
|
|
26
|
|
|
return para |
27
|
|
|
|
28
|
|
|
def para2value(self, para: dict) -> list: |
29
|
|
|
value = [] |
30
|
|
|
for para_name in self.s_space.dim_keys: |
31
|
|
|
value.append(para[para_name]) |
32
|
|
|
|
33
|
|
|
return value |
34
|
|
|
|
35
|
|
|
def position2value(self, position): |
36
|
|
|
value = [] |
37
|
|
|
|
38
|
|
|
for n, space_dim in enumerate(self.s_space.values_l): |
39
|
|
|
value.append(space_dim[position[n]]) |
40
|
|
|
|
41
|
|
|
return value |
42
|
|
|
|
43
|
|
|
def para_func2str(self, para): |
44
|
|
|
para_conv = {} |
45
|
|
|
for dim_key in self.s_space.dim_keys: |
46
|
|
|
if self.s_space.data_types[dim_key] == "number": |
47
|
|
|
continue |
48
|
|
|
|
49
|
|
|
try: |
50
|
|
|
value_conv = para[dim_key].__name__ |
51
|
|
|
except: |
52
|
|
|
value_conv = para[dim_key] |
53
|
|
|
|
54
|
|
|
para_conv[dim_key] = value_conv |
55
|
|
|
|
56
|
|
|
def value_func2str(self, value): |
57
|
|
|
try: |
58
|
|
|
return value.__name__ |
59
|
|
|
except: |
60
|
|
|
return value |
61
|
|
|
|
62
|
|
|
def conv_para(self, para_hyper): |
63
|
|
|
para_gfo = {} |
64
|
|
|
for para in self.s_space.dim_keys: |
65
|
|
|
value_hyper = para_hyper[para] |
66
|
|
|
space_dim = list(self.s_space.func2str[para]) |
67
|
|
|
|
68
|
|
|
if self.s_space.data_types[para] == "number": |
69
|
|
|
value_gfo = np.abs(value_hyper - np.array(space_dim)).argmin() |
70
|
|
|
else: |
71
|
|
|
value_hyper = self.value_func2str(value_hyper) |
72
|
|
|
|
73
|
|
|
if value_hyper in space_dim: |
74
|
|
|
value_gfo = space_dim.index(value_hyper) |
75
|
|
|
else: |
76
|
|
|
raise ValueError( |
77
|
|
|
"'{}' was not found in '{}'".format(value_hyper, para) |
78
|
|
|
) |
79
|
|
|
|
80
|
|
|
para_gfo[para] = value_gfo |
81
|
|
|
return para_gfo |
82
|
|
|
|
83
|
|
|
def conv_initialize(self, initialize): |
84
|
|
|
if "warm_start" in list(initialize.keys()): |
85
|
|
|
warm_start_l = initialize["warm_start"] |
86
|
|
|
warm_start_gfo = [] |
87
|
|
|
for warm_start in warm_start_l: |
88
|
|
|
para_gfo = self.conv_para(warm_start) |
89
|
|
|
warm_start_gfo.append(para_gfo) |
90
|
|
|
|
91
|
|
|
initialize["warm_start"] = warm_start_gfo |
92
|
|
|
|
93
|
|
|
return initialize |
94
|
|
|
|
95
|
|
|
def get_list_positions(self, list1_values, search_dim): |
96
|
|
|
list_positions = [] |
97
|
|
|
|
98
|
|
|
for value2 in list1_values: |
99
|
|
|
list_positions.append(search_dim.index(value2)) |
100
|
|
|
|
101
|
|
|
return list_positions |
102
|
|
|
|
103
|
|
|
def values2positions(self, values, search_dim): |
104
|
|
|
return np.array(search_dim).searchsorted(values) |
105
|
|
|
|
106
|
|
|
def positions2results(self, positions): |
107
|
|
|
results_dict = {} |
108
|
|
|
|
109
|
|
|
for para_name in self.s_space.dim_keys: |
110
|
|
|
values_list = self.s_space[para_name] |
111
|
|
|
pos_ = positions[para_name].values |
112
|
|
|
values_ = [values_list[idx] for idx in pos_] |
113
|
|
|
results_dict[para_name] = values_ |
114
|
|
|
|
115
|
|
|
results = pd.DataFrame.from_dict(results_dict) |
116
|
|
|
|
117
|
|
|
diff_list = np.setdiff1d(positions.columns, results.columns) |
118
|
|
|
results[diff_list] = positions[diff_list] |
119
|
|
|
|
120
|
|
|
return results |
121
|
|
|
|
122
|
|
|
def conv_memory_warm_start(self, results): |
123
|
|
|
if results is None: |
124
|
|
|
return results |
125
|
|
|
|
126
|
|
|
results.reset_index(inplace=True, drop=True) |
127
|
|
|
|
128
|
|
|
df_positions_dict = {} |
129
|
|
|
for dim_key in self.s_space.dim_keys: |
130
|
|
|
result_dim_values = list(results[dim_key].values) |
131
|
|
|
search_dim = self.s_space.func2str[dim_key] |
132
|
|
|
|
133
|
|
|
if self.s_space.data_types[dim_key] == "object": |
134
|
|
|
result_dim_values_tmp = [] |
135
|
|
|
for value in result_dim_values: |
136
|
|
|
try: |
137
|
|
|
value = value.__name__ |
138
|
|
|
except: |
139
|
|
|
pass |
140
|
|
|
|
141
|
|
|
result_dim_values_tmp.append(value) |
142
|
|
|
|
143
|
|
|
result_dim_values = result_dim_values_tmp |
144
|
|
|
|
145
|
|
|
list1_positions = self.get_list_positions(result_dim_values, search_dim) |
146
|
|
|
else: |
147
|
|
|
list1_positions = self.values2positions(result_dim_values, search_dim) |
148
|
|
|
|
149
|
|
|
# remove None |
150
|
|
|
# list1_positions_ = [x for x in list1_positions if x is not None] |
151
|
|
|
df_positions_dict[dim_key] = list1_positions |
152
|
|
|
|
153
|
|
|
results_new = pd.DataFrame(df_positions_dict) |
154
|
|
|
|
155
|
|
|
results_new["score"] = results["score"] |
156
|
|
|
results_new.dropna(how="any", inplace=True) |
157
|
|
|
|
158
|
|
|
return results_new |
159
|
|
|
|