1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
|
7
|
|
|
from sklearn.datasets import load_iris |
8
|
|
|
from sklearn.model_selection import cross_val_score |
9
|
|
|
from sklearn.tree import DecisionTreeClassifier |
10
|
|
|
from hyperactive import Hyperactive |
11
|
|
|
|
12
|
|
|
data = load_iris() |
13
|
|
|
X = data.data |
14
|
|
|
y = data.target |
15
|
|
|
|
16
|
|
|
memory = False |
17
|
|
|
|
18
|
|
|
n_iter = 100 |
19
|
|
|
|
20
|
|
|
|
21
|
|
|
def sphere_function(para, X_train, y_train): |
22
|
|
|
loss = [] |
23
|
|
|
for key in para.keys(): |
24
|
|
|
if key == "iteration": |
25
|
|
|
continue |
26
|
|
|
loss.append(para[key] * para[key]) |
27
|
|
|
|
28
|
|
|
return -np.array(loss).sum() |
29
|
|
|
|
30
|
|
|
|
31
|
|
|
search_config = {sphere_function: {"x1": range(-10, 10), "x2": range(-10, 10)}} |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
def test_HillClimbingOptimizer(): |
35
|
|
|
opt = Hyperactive(X, y, memory=memory) |
36
|
|
|
opt.search(search_config, n_iter=n_iter, optimizer="HillClimbing") |
37
|
|
|
|
38
|
|
|
|
39
|
|
|
def test_StochasticHillClimbingOptimizer(): |
40
|
|
|
opt = Hyperactive(X, y, memory=memory) |
41
|
|
|
opt.search(search_config, n_iter=n_iter, optimizer="StochasticHillClimbing") |
42
|
|
|
|
43
|
|
|
|
44
|
|
|
def test_TabuOptimizer(): |
45
|
|
|
opt = Hyperactive(X, y, memory=memory) |
46
|
|
|
opt.search(search_config, n_iter=n_iter, optimizer="TabuSearch") |
47
|
|
|
|
48
|
|
|
|
49
|
|
|
def test_RandomSearchOptimizer(): |
50
|
|
|
opt = Hyperactive(X, y, memory=memory) |
51
|
|
|
opt.search(search_config, n_iter=n_iter, optimizer="RandomSearch") |
52
|
|
|
|
53
|
|
|
|
54
|
|
|
def test_RandomRestartHillClimbingOptimizer(): |
55
|
|
|
opt = Hyperactive(X, y, memory=memory) |
56
|
|
|
opt.search(search_config, n_iter=n_iter, optimizer="RandomRestartHillClimbing") |
57
|
|
|
|
58
|
|
|
|
59
|
|
|
def test_RandomAnnealingOptimizer(): |
60
|
|
|
opt = Hyperactive(X, y, memory=memory) |
61
|
|
|
opt.search(search_config, n_iter=n_iter, optimizer="RandomAnnealing") |
62
|
|
|
|
63
|
|
|
|
64
|
|
|
def test_SimulatedAnnealingOptimizer(): |
65
|
|
|
opt = Hyperactive(X, y, memory=memory) |
66
|
|
|
opt.search(search_config, n_iter=n_iter, optimizer="SimulatedAnnealing") |
67
|
|
|
|
68
|
|
|
|
69
|
|
|
def test_StochasticTunnelingOptimizer(): |
70
|
|
|
opt = Hyperactive(X, y, memory=memory) |
71
|
|
|
opt.search(search_config, n_iter=n_iter, optimizer="StochasticTunneling") |
72
|
|
|
|
73
|
|
|
|
74
|
|
|
def test_ParallelTemperingOptimizer(): |
75
|
|
|
opt = Hyperactive(X, y, memory=memory) |
76
|
|
|
opt.search(search_config, n_iter=n_iter, optimizer="ParallelTempering") |
77
|
|
|
|
78
|
|
|
|
79
|
|
|
def test_ParticleSwarmOptimizer(): |
80
|
|
|
opt = Hyperactive(X, y, memory=memory) |
81
|
|
|
opt.search(search_config, n_iter=n_iter, optimizer="ParticleSwarm") |
82
|
|
|
|
83
|
|
|
|
84
|
|
|
def test_EvolutionStrategyOptimizer(): |
85
|
|
|
opt = Hyperactive(X, y, memory=memory) |
86
|
|
|
opt.search(search_config, n_iter=n_iter, optimizer="EvolutionStrategy") |
87
|
|
|
|
88
|
|
|
|
89
|
|
|
def test_BayesianOptimizer(): |
90
|
|
|
opt = Hyperactive(X, y, memory=memory) |
91
|
|
|
opt.search(search_config, n_iter=int(n_iter / 10), optimizer="Bayesian") |
92
|
|
|
|