Completed
Push — master ( a98e6f...9f25fc )
by Simon
01:24
created

test_RandomAnnealingOptimizer()   A

Complexity

Conditions 1

Size

Total Lines 3
Code Lines 3

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 3
dl 0
loc 3
rs 10
c 0
b 0
f 0
cc 1
nop 0
1
# Author: Simon Blanke
2
# Email: [email protected]
3
# License: MIT License
4
5
import numpy as np
6
7
from sklearn.datasets import load_iris
8
from sklearn.model_selection import cross_val_score
9
from sklearn.tree import DecisionTreeClassifier
10
from hyperactive import Hyperactive
11
12
data = load_iris()
13
X = data.data
14
y = data.target
15
16
memory = False
17
18
n_iter = 100
19
20
21
def sphere_function(para, X_train, y_train):
22
    loss = []
23
    for key in para.keys():
24
        if key == "iteration":
25
            continue
26
        loss.append(para[key] * para[key])
27
28
    return -np.array(loss).sum()
29
30
31
search_config = {sphere_function: {"x1": range(-10, 10), "x2": range(-10, 10)}}
32
33
34
def test_HillClimbingOptimizer():
35
    opt = Hyperactive(X, y, memory=memory)
36
    opt.search(search_config, n_iter=n_iter, optimizer="HillClimbing")
37
38
39
def test_StochasticHillClimbingOptimizer():
40
    opt = Hyperactive(X, y, memory=memory)
41
    opt.search(search_config, n_iter=n_iter, optimizer="StochasticHillClimbing")
42
43
44
def test_TabuOptimizer():
45
    opt = Hyperactive(X, y, memory=memory)
46
    opt.search(search_config, n_iter=n_iter, optimizer="TabuSearch")
47
48
49
def test_RandomSearchOptimizer():
50
    opt = Hyperactive(X, y, memory=memory)
51
    opt.search(search_config, n_iter=n_iter, optimizer="RandomSearch")
52
53
54
def test_RandomRestartHillClimbingOptimizer():
55
    opt = Hyperactive(X, y, memory=memory)
56
    opt.search(search_config, n_iter=n_iter, optimizer="RandomRestartHillClimbing")
57
58
59
def test_RandomAnnealingOptimizer():
60
    opt = Hyperactive(X, y, memory=memory)
61
    opt.search(search_config, n_iter=n_iter, optimizer="RandomAnnealing")
62
63
64
def test_SimulatedAnnealingOptimizer():
65
    opt = Hyperactive(X, y, memory=memory)
66
    opt.search(search_config, n_iter=n_iter, optimizer="SimulatedAnnealing")
67
68
69
def test_StochasticTunnelingOptimizer():
70
    opt = Hyperactive(X, y, memory=memory)
71
    opt.search(search_config, n_iter=n_iter, optimizer="StochasticTunneling")
72
73
74
def test_ParallelTemperingOptimizer():
75
    opt = Hyperactive(X, y, memory=memory)
76
    opt.search(search_config, n_iter=n_iter, optimizer="ParallelTempering")
77
78
79
def test_ParticleSwarmOptimizer():
80
    opt = Hyperactive(X, y, memory=memory)
81
    opt.search(search_config, n_iter=n_iter, optimizer="ParticleSwarm")
82
83
84
def test_EvolutionStrategyOptimizer():
85
    opt = Hyperactive(X, y, memory=memory)
86
    opt.search(search_config, n_iter=n_iter, optimizer="EvolutionStrategy")
87
88
89
def test_BayesianOptimizer():
90
    opt = Hyperactive(X, y, memory=memory)
91
    opt.search(search_config, n_iter=int(n_iter / 10), optimizer="Bayesian")
92