Passed
Push — master ( 7596de...7d2c3d )
by Simon
04:29
created

progress_visualization.model()   A

Complexity

Conditions 1

Size

Total Lines 9
Code Lines 7

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 7
nop 1
dl 0
loc 9
rs 10
c 0
b 0
f 0
1
from sklearn.model_selection import cross_val_score
2
from sklearn.ensemble import GradientBoostingRegressor
3
from sklearn.datasets import load_boston
4
5
from hyperactive import Hyperactive
6
7
# import the ProgressBoard
8
from hyperactive.dashboards import ProgressBoard
9
10
data = load_boston()
11
X, y = data.data, data.target
12
13
14
def model(opt):
15
    gbr = GradientBoostingRegressor(
16
        n_estimators=opt["n_estimators"],
17
        max_depth=opt["max_depth"],
18
        min_samples_split=opt["min_samples_split"],
19
    )
20
    scores = cross_val_score(gbr, X, y, cv=3)
21
22
    return scores.mean()
23
24
25
search_space = {
26
    "n_estimators": list(range(50, 150, 5)),
27
    "max_depth": list(range(2, 12)),
28
    "min_samples_split": list(range(2, 22)),
29
}
30
31
# create an instance of the ProgressBoard
32
progress_board = ProgressBoard()
33
34
35
hyper = Hyperactive()
36
37
hyper.add_search(
38
    model,
39
    search_space,
40
    n_iter=120,
41
    n_jobs=2,  # the progress board works seamlessly with multiprocessing
42
    progress_board=progress_board,  # pass the instance of the ProgressBoard to .add_search(...)
43
)
44
45
# a terminal will open, which opens a dashboard in your browser
46
hyper.run()
47