Code Duplication    Length = 28-28 lines in 2 locations

tests/test_progress_board.py 2 locations

@@ 139-166 (lines=28) @@
136
    assert pyplot_fig is not None
137
138
139
def test_streamlit_backend_2():
140
    search_id1 = "test_model1"
141
    search_id2 = "test_model2"
142
    search_id3 = "test_model3"
143
144
    search_ids = [search_id1, search_id2, search_id3]
145
146
    board = StreamlitBackend(search_ids)
147
148
    def objective_function(opt):
149
        score = -opt["x1"] * opt["x1"]
150
        return score
151
152
    search_space = {
153
        "x1": np.arange(-100, 101, 1),
154
    }
155
156
    hyper = Hyperactive()
157
    hyper.add_search(objective_function, search_space, n_iter=200)
158
    hyper.run()
159
    search_data = hyper.results(objective_function)
160
    search_data["nth_iter"] = 0
161
    search_data["score_best"] = 0
162
    search_data["nth_process"] = 0
163
164
    plotly_fig = board.plotly(search_data, search_id1)
165
166
    assert plotly_fig is not None
167
168
169
def test_streamlit_backend_3():
@@ 109-136 (lines=28) @@
106
    assert progress_data is None
107
108
109
def test_streamlit_backend_1():
110
    search_id1 = "test_model1"
111
    search_id2 = "test_model2"
112
    search_id3 = "test_model3"
113
114
    search_ids = [search_id1, search_id2, search_id3]
115
116
    board = StreamlitBackend(search_ids)
117
118
    def objective_function(opt):
119
        score = -opt["x1"] * opt["x1"]
120
        return score
121
122
    search_space = {
123
        "x1": np.arange(-100, 101, 1),
124
    }
125
126
    hyper = Hyperactive()
127
    hyper.add_search(objective_function, search_space, n_iter=200)
128
    hyper.run()
129
    search_data = hyper.results(objective_function)
130
    search_data["nth_iter"] = 0
131
    search_data["score_best"] = 0
132
    search_data["nth_process"] = 0
133
134
    pyplot_fig = board.pyplot(search_data)
135
136
    assert pyplot_fig is not None
137
138
139
def test_streamlit_backend_2():