| @@ 28-39 (lines=12) @@ | ||
| 25 | return scores.mean() |
|
| 26 | ||
| 27 | ||
| 28 | def model_rfc(opt): |
|
| 29 | rfc = RandomForestClassifier( |
|
| 30 | n_estimators=opt["n_estimators"], |
|
| 31 | criterion=opt["criterion"], |
|
| 32 | max_features=opt["max_features"], |
|
| 33 | min_samples_split=opt["min_samples_split"], |
|
| 34 | min_samples_leaf=opt["min_samples_leaf"], |
|
| 35 | bootstrap=opt["bootstrap"], |
|
| 36 | ) |
|
| 37 | scores = cross_val_score(rfc, X, y, cv=3) |
|
| 38 | ||
| 39 | return scores.mean() |
|
| 40 | ||
| 41 | ||
| 42 | def model_gbc(opt): |
|
| @@ 28-39 (lines=12) @@ | ||
| 25 | return scores.mean() |
|
| 26 | ||
| 27 | ||
| 28 | def model_rfc(opt): |
|
| 29 | rfc = RandomForestClassifier( |
|
| 30 | n_estimators=opt["n_estimators"], |
|
| 31 | criterion=opt["criterion"], |
|
| 32 | max_features=opt["max_features"], |
|
| 33 | min_samples_split=opt["min_samples_split"], |
|
| 34 | min_samples_leaf=opt["min_samples_leaf"], |
|
| 35 | bootstrap=opt["bootstrap"], |
|
| 36 | ) |
|
| 37 | scores = cross_val_score(rfc, X, y, cv=3) |
|
| 38 | ||
| 39 | return scores.mean() |
|
| 40 | ||
| 41 | ||
| 42 | def model_gbc(opt): |
|