Code Duplication    Length = 16-16 lines in 2 locations

hyperactive/optimizers/sequence_model/tree_structured_parzen_estimators.py 1 location

@@ 83-98 (lines=16) @@
80
81
        return _cand_
82
83
    def _init_opt_positioner(self, _cand_):
84
        _p_ = Bayesian()
85
86
        self._all_possible_pos(_cand_)
87
88
        if self._opt_args_.warm_start_smbo:
89
            self.X_sample = _cand_.mem._get_para()
90
            self.Y_sample = _cand_.mem._get_score()
91
        else:
92
            self.X_sample = _cand_.pos_best.reshape(1, -1)
93
            self.Y_sample = np.array(_cand_.score_best).reshape(1, -1)
94
95
        _p_.pos_current = _cand_.pos_best
96
        _p_.score_current = _cand_.score_best
97
98
        return _p_
99
100
101
class Bayesian(BasePositioner):

hyperactive/optimizers/sequence_model/bayesian_optimization.py 1 location

@@ 65-80 (lines=16) @@
62
63
        return _cand_
64
65
    def _init_opt_positioner(self, _cand_):
66
        _p_ = Bayesian()
67
68
        self._all_possible_pos(_cand_)
69
70
        if self._opt_args_.warm_start_smbo:
71
            self.X_sample = _cand_.mem._get_para()
72
            self.Y_sample = _cand_.mem._get_score()
73
        else:
74
            self.X_sample = _cand_.pos_best.reshape(1, -1)
75
            self.Y_sample = np.array(_cand_.score_best).reshape(1, -1)
76
77
        _p_.pos_current = _cand_.pos_best
78
        _p_.score_current = _cand_.score_best
79
80
        return _p_
81
82
83
class Bayesian(BasePositioner):