Code Duplication    Length = 10-10 lines in 5 locations

tests/local/_test_performance.py 1 location

@@ 19-28 (lines=10) @@
16
n_iter_max = 100
17
18
19
def model(para, X_train, y_train):
20
    model = DecisionTreeClassifier(
21
        criterion=para["criterion"],
22
        max_depth=para["max_depth"],
23
        min_samples_split=para["min_samples_split"],
24
        min_samples_leaf=para["min_samples_leaf"],
25
    )
26
    scores = cross_val_score(model, X_train, y_train, cv=2)
27
28
    return scores.mean()
29
30
31
search_config = {

tests/test_optimizers.py 1 location

@@ 19-28 (lines=10) @@
16
n_iter = 30
17
18
19
def model(para, X_train, y_train):
20
    model = DecisionTreeClassifier(
21
        criterion=para["criterion"],
22
        max_depth=para["max_depth"],
23
        min_samples_split=para["min_samples_split"],
24
        min_samples_leaf=para["min_samples_leaf"],
25
    )
26
    scores = cross_val_score(model, X_train, y_train, cv=2)
27
28
    return scores.mean()
29
30
31
search_config = {

tests/test_data.py 1 location

@@ 19-28 (lines=10) @@
16
y_pd = pd.DataFrame(y_np, columns=["y1"])
17
18
19
def model(para, X_train, y_train):
20
    model = DecisionTreeClassifier(
21
        criterion=para["criterion"],
22
        max_depth=para["max_depth"],
23
        min_samples_split=para["min_samples_split"],
24
        min_samples_leaf=para["min_samples_leaf"],
25
    )
26
    scores = cross_val_score(model, X_train, y_train, cv=3)
27
28
    return scores.mean()
29
30
31
search_config = {

tests/local/_test_packages.py 1 location

@@ 18-27 (lines=10) @@
15
def test_sklearn():
16
    from sklearn.tree import DecisionTreeClassifier
17
18
    def model(para, X_train, y_train):
19
        model = DecisionTreeClassifier(
20
            criterion=para["criterion"],
21
            max_depth=para["max_depth"],
22
            min_samples_split=para["min_samples_split"],
23
            min_samples_leaf=para["min_samples_leaf"],
24
        )
25
        scores = cross_val_score(model, X_train, y_train, cv=3)
26
27
        return scores.mean()
28
29
    search_config = {
30
        model: {

tests/_test_meta_learn.py 1 location

@@ 16-25 (lines=10) @@
13
y = data.target
14
15
16
def model(para, X_train, y_train):
17
    model = DecisionTreeClassifier(
18
        criterion=para["criterion"],
19
        max_depth=para["max_depth"],
20
        min_samples_split=para["min_samples_split"],
21
        min_samples_leaf=para["min_samples_leaf"],
22
    )
23
    scores = cross_val_score(model, X_train, y_train, cv=3)
24
25
    return scores.mean(), model
26
27
28
search_config = {