| @@ 21-38 (lines=18) @@ | ||
| 18 | layer.trainable = False |
|
| 19 | ||
| 20 | ||
| 21 | def cnn(para, X_train, y_train): |
|
| 22 | model = Sequential() |
|
| 23 | ||
| 24 | model.add(Flatten()) |
|
| 25 | model.add(Dense(para["Dense.0"])) |
|
| 26 | model.add(Activation("relu")) |
|
| 27 | model.add(Dropout(para["Dropout.0"])) |
|
| 28 | model.add(Dense(10)) |
|
| 29 | model.add(Activation("softmax")) |
|
| 30 | ||
| 31 | model.compile( |
|
| 32 | optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] |
|
| 33 | ) |
|
| 34 | model.fit(X_train, y_train, epochs=25, batch_size=128) |
|
| 35 | ||
| 36 | _, score = model.evaluate(x=X_test, y=y_test) |
|
| 37 | ||
| 38 | return score |
|
| 39 | ||
| 40 | ||
| 41 | search_config = { |
|
| @@ 21-36 (lines=16) @@ | ||
| 18 | layer.trainable = False |
|
| 19 | ||
| 20 | ||
| 21 | def cnn(para, X_train, y_train): |
|
| 22 | nn = Sequential() |
|
| 23 | ||
| 24 | nn.add(Flatten()) |
|
| 25 | nn.add(Dense(para["Dense.0"])) |
|
| 26 | nn.add(Activation("relu")) |
|
| 27 | nn.add(Dropout(para["Dropout.0"])) |
|
| 28 | nn.add(Dense(10)) |
|
| 29 | nn.add(Activation("softmax")) |
|
| 30 | ||
| 31 | nn.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) |
|
| 32 | nn.fit(X_train, y_train, epochs=25, batch_size=128) |
|
| 33 | ||
| 34 | _, score = nn.evaluate(x=X_test, y=y_test) |
|
| 35 | ||
| 36 | return score |
|
| 37 | ||
| 38 | ||
| 39 | search_config = { |
|