Code Duplication    Length = 16-18 lines in 2 locations

examples/examples_v1.x.x/use_cases/transfer_learning.py 1 location

@@ 21-38 (lines=18) @@
18
    layer.trainable = False
19
20
21
def cnn(para, X_train, y_train):
22
    model = Sequential()
23
24
    model.add(Flatten())
25
    model.add(Dense(para["Dense.0"]))
26
    model.add(Activation("relu"))
27
    model.add(Dropout(para["Dropout.0"]))
28
    model.add(Dense(10))
29
    model.add(Activation("softmax"))
30
31
    model.compile(
32
        optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]
33
    )
34
    model.fit(X_train, y_train, epochs=25, batch_size=128)
35
36
    _, score = model.evaluate(x=X_test, y=y_test)
37
38
    return score
39
40
41
search_config = {

examples/use_cases/TransferLearning.py 1 location

@@ 21-36 (lines=16) @@
18
    layer.trainable = False
19
20
21
def cnn(para, X_train, y_train):
22
    nn = Sequential()
23
24
    nn.add(Flatten())
25
    nn.add(Dense(para["Dense.0"]))
26
    nn.add(Activation("relu"))
27
    nn.add(Dropout(para["Dropout.0"]))
28
    nn.add(Dense(10))
29
    nn.add(Activation("softmax"))
30
31
    nn.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
32
    nn.fit(X_train, y_train, epochs=25, batch_size=128)
33
34
    _, score = nn.evaluate(x=X_test, y=y_test)
35
36
    return score
37
38
39
search_config = {