| @@ 23-37 (lines=15) @@ | ||
| 20 | return X |
|
| 21 | ||
| 22 | ||
| 23 | def model(para, X, y): |
|
| 24 | model = GradientBoostingClassifier( |
|
| 25 | n_estimators=para["n_estimators"], |
|
| 26 | max_depth=para["max_depth"], |
|
| 27 | min_samples_split=para["min_samples_split"], |
|
| 28 | min_samples_leaf=para["min_samples_leaf"], |
|
| 29 | ) |
|
| 30 | ||
| 31 | X_pca = para["decomposition"](X) |
|
| 32 | X = np.hstack((X, X_pca)) |
|
| 33 | ||
| 34 | X = SelectKBest(f_classif, k=para["k"]).fit_transform(X, y) |
|
| 35 | scores = cross_val_score(model, X, y, cv=3) |
|
| 36 | ||
| 37 | return scores.mean() |
|
| 38 | ||
| 39 | ||
| 40 | search_config = { |
|
| @@ 23-37 (lines=15) @@ | ||
| 20 | return X |
|
| 21 | ||
| 22 | ||
| 23 | def model(para, X, y): |
|
| 24 | model = GradientBoostingClassifier( |
|
| 25 | n_estimators=para["n_estimators"], |
|
| 26 | max_depth=para["max_depth"], |
|
| 27 | min_samples_split=para["min_samples_split"], |
|
| 28 | min_samples_leaf=para["min_samples_leaf"], |
|
| 29 | ) |
|
| 30 | ||
| 31 | X_pca = para["decomposition"](X) |
|
| 32 | X = np.hstack((X, X_pca)) |
|
| 33 | ||
| 34 | X = SelectKBest(f_classif, k=para["k"]).fit_transform(X, y) |
|
| 35 | scores = cross_val_score(model, X, y, cv=3) |
|
| 36 | ||
| 37 | return scores.mean() |
|
| 38 | ||
| 39 | ||
| 40 | search_config = { |
|
| @@ 21-33 (lines=13) @@ | ||
| 18 | return gbc |
|
| 19 | ||
| 20 | ||
| 21 | def model(para, X, y): |
|
| 22 | gbc = GradientBoostingClassifier( |
|
| 23 | n_estimators=para["n_estimators"], |
|
| 24 | max_depth=para["max_depth"], |
|
| 25 | min_samples_split=para["min_samples_split"], |
|
| 26 | min_samples_leaf=para["min_samples_leaf"], |
|
| 27 | ) |
|
| 28 | filter_ = SelectKBest(f_classif, k=para["k"]) |
|
| 29 | model_ = para["pipeline"](filter_, gbc) |
|
| 30 | ||
| 31 | scores = cross_val_score(model_, X, y, cv=3) |
|
| 32 | ||
| 33 | return scores.mean() |
|
| 34 | ||
| 35 | ||
| 36 | search_config = { |
|
| @@ 21-33 (lines=13) @@ | ||
| 18 | return gbc |
|
| 19 | ||
| 20 | ||
| 21 | def model(para, X, y): |
|
| 22 | gbc = GradientBoostingClassifier( |
|
| 23 | n_estimators=para["n_estimators"], |
|
| 24 | max_depth=para["max_depth"], |
|
| 25 | min_samples_split=para["min_samples_split"], |
|
| 26 | min_samples_leaf=para["min_samples_leaf"], |
|
| 27 | ) |
|
| 28 | filter_ = SelectKBest(f_classif, k=para["k"]) |
|
| 29 | model_ = para["pipeline"](filter_, gbc) |
|
| 30 | ||
| 31 | scores = cross_val_score(model_, X, y, cv=3) |
|
| 32 | ||
| 33 | return scores.mean() |
|
| 34 | ||
| 35 | ||
| 36 | search_config = { |
|