Code Duplication    Length = 13-15 lines in 4 locations

examples/examples_v1.x.x/use_cases/sklearn_preprocessing_example.py 1 location

@@ 23-37 (lines=15) @@
20
    return X
21
22
23
def model(para, X, y):
24
    model = GradientBoostingClassifier(
25
        n_estimators=para["n_estimators"],
26
        max_depth=para["max_depth"],
27
        min_samples_split=para["min_samples_split"],
28
        min_samples_leaf=para["min_samples_leaf"],
29
    )
30
31
    X_pca = para["decomposition"](X)
32
    X = np.hstack((X, X_pca))
33
34
    X = SelectKBest(f_classif, k=para["k"]).fit_transform(X, y)
35
    scores = cross_val_score(model, X, y, cv=3)
36
37
    return scores.mean()
38
39
40
search_config = {

examples/use_cases/SklearnPreprocessing.py 1 location

@@ 23-37 (lines=15) @@
20
    return X
21
22
23
def model(para, X, y):
24
    model = GradientBoostingClassifier(
25
        n_estimators=para["n_estimators"],
26
        max_depth=para["max_depth"],
27
        min_samples_split=para["min_samples_split"],
28
        min_samples_leaf=para["min_samples_leaf"],
29
    )
30
31
    X_pca = para["decomposition"](X)
32
    X = np.hstack((X, X_pca))
33
34
    X = SelectKBest(f_classif, k=para["k"]).fit_transform(X, y)
35
    scores = cross_val_score(model, X, y, cv=3)
36
37
    return scores.mean()
38
39
40
search_config = {

examples/use_cases/SklearnPipeline.py 1 location

@@ 21-33 (lines=13) @@
18
    return gbc
19
20
21
def model(para, X, y):
22
    gbc = GradientBoostingClassifier(
23
        n_estimators=para["n_estimators"],
24
        max_depth=para["max_depth"],
25
        min_samples_split=para["min_samples_split"],
26
        min_samples_leaf=para["min_samples_leaf"],
27
    )
28
    filter_ = SelectKBest(f_classif, k=para["k"])
29
    model_ = para["pipeline"](filter_, gbc)
30
31
    scores = cross_val_score(model_, X, y, cv=3)
32
33
    return scores.mean()
34
35
36
search_config = {

examples/examples_v1.x.x/use_cases/sklearn_pipeline_example.py 1 location

@@ 21-33 (lines=13) @@
18
    return gbc
19
20
21
def model(para, X, y):
22
    gbc = GradientBoostingClassifier(
23
        n_estimators=para["n_estimators"],
24
        max_depth=para["max_depth"],
25
        min_samples_split=para["min_samples_split"],
26
        min_samples_leaf=para["min_samples_leaf"],
27
    )
28
    filter_ = SelectKBest(f_classif, k=para["k"])
29
    model_ = para["pipeline"](filter_, gbc)
30
31
    scores = cross_val_score(model_, X, y, cv=3)
32
33
    return scores.mean()
34
35
36
search_config = {