| @@ 11-43 (lines=33) @@ | ||
| 8 | X, y = data.data, data.target |
|
| 9 | ||
| 10 | ||
| 11 | def meta_opt(para, X, y): |
|
| 12 | def model(para, X, y): |
|
| 13 | model = DecisionTreeClassifier( |
|
| 14 | max_depth=para["max_depth"], |
|
| 15 | min_samples_split=para["min_samples_split"], |
|
| 16 | min_samples_leaf=para["min_samples_leaf"], |
|
| 17 | ) |
|
| 18 | scores = cross_val_score(model, X, y, cv=3) |
|
| 19 | ||
| 20 | return scores.mean() |
|
| 21 | ||
| 22 | search_config = { |
|
| 23 | model: { |
|
| 24 | "max_depth": range(2, 50), |
|
| 25 | "min_samples_split": range(2, 50), |
|
| 26 | "min_samples_leaf": range(1, 50), |
|
| 27 | } |
|
| 28 | } |
|
| 29 | ||
| 30 | opt = Hyperactive( |
|
| 31 | search_config, |
|
| 32 | optimizer={ |
|
| 33 | "ParticleSwarm": { |
|
| 34 | "inertia": para["inertia"], |
|
| 35 | "cognitive_weight": para["cognitive_weight"], |
|
| 36 | "social_weight": para["social_weight"], |
|
| 37 | } |
|
| 38 | }, |
|
| 39 | verbosity=None, |
|
| 40 | ) |
|
| 41 | opt.search(X, y) |
|
| 42 | ||
| 43 | return opt.score_best |
|
| 44 | ||
| 45 | ||
| 46 | search_config = { |
|
| @@ 11-43 (lines=33) @@ | ||
| 8 | X, y = data.data, data.target |
|
| 9 | ||
| 10 | ||
| 11 | def meta_opt(para, X, y): |
|
| 12 | def model(para, X, y): |
|
| 13 | model = DecisionTreeClassifier( |
|
| 14 | max_depth=para["max_depth"], |
|
| 15 | min_samples_split=para["min_samples_split"], |
|
| 16 | min_samples_leaf=para["min_samples_leaf"], |
|
| 17 | ) |
|
| 18 | scores = cross_val_score(model, X, y, cv=3) |
|
| 19 | ||
| 20 | return scores.mean() |
|
| 21 | ||
| 22 | search_config = { |
|
| 23 | model: { |
|
| 24 | "max_depth": range(2, 50), |
|
| 25 | "min_samples_split": range(2, 50), |
|
| 26 | "min_samples_leaf": range(1, 50), |
|
| 27 | } |
|
| 28 | } |
|
| 29 | ||
| 30 | opt = Hyperactive( |
|
| 31 | search_config, |
|
| 32 | optimizer={ |
|
| 33 | "ParticleSwarm": { |
|
| 34 | "inertia": para["inertia"], |
|
| 35 | "cognitive_weight": para["cognitive_weight"], |
|
| 36 | "social_weight": para["social_weight"], |
|
| 37 | } |
|
| 38 | }, |
|
| 39 | verbosity=None, |
|
| 40 | ) |
|
| 41 | opt.search(X, y) |
|
| 42 | ||
| 43 | return opt.score_best |
|
| 44 | ||
| 45 | ||
| 46 | search_config = { |
|