| @@ 259-272 (lines=14) @@ | ||
| 256 | ||
| 257 | return pos |
|
| 258 | ||
| 259 | def _collect(self, _cand_): |
|
| 260 | results_dict = self._get_opt_meta_data() |
|
| 261 | ||
| 262 | para_pd = pd.DataFrame(results_dict["params"]) |
|
| 263 | metric_pd = pd.DataFrame( |
|
| 264 | results_dict["mean_test_score"], columns=["mean_test_score"] |
|
| 265 | ) |
|
| 266 | ||
| 267 | eval_time = pd.DataFrame(_cand_.eval_time[-len(para_pd):], columns=["eval_time"]) |
|
| 268 | md_model = pd.concat( |
|
| 269 | [para_pd, metric_pd, eval_time], axis=1, ignore_index=False |
|
| 270 | ) |
|
| 271 | ||
| 272 | return md_model |
|
| 273 | ||
| 274 | def _get_hash(self, object): |
|
| 275 | return hashlib.sha1(object).hexdigest() |
|
| @@ 243-256 (lines=14) @@ | ||
| 240 | ||
| 241 | return paras |
|
| 242 | ||
| 243 | def _collect(self, _cand_): |
|
| 244 | results_dict = self._get_opt_meta_data() |
|
| 245 | ||
| 246 | para_pd = pd.DataFrame(results_dict["params"]) |
|
| 247 | metric_pd = pd.DataFrame( |
|
| 248 | results_dict["mean_test_score"], columns=["mean_test_score"] |
|
| 249 | ) |
|
| 250 | ||
| 251 | eval_time = pd.DataFrame(_cand_.eval_time, columns=["eval_time"]) |
|
| 252 | md_model = pd.concat( |
|
| 253 | [para_pd, metric_pd, eval_time], axis=1, ignore_index=False |
|
| 254 | ) |
|
| 255 | ||
| 256 | return md_model |
|
| 257 | ||
| 258 | def _get_hash(self, object): |
|
| 259 | return hashlib.sha1(object).hexdigest() |
|