Code Duplication    Length = 49-49 lines in 2 locations

hyperactive/memory.py 1 location

@@ 80-128 (lines=49) @@
77
        self._load_data_into_memory(para, score)
78
        self.n_dims = len(para.columns)
79
80
    def save_memory(self, _main_args_, _opt_args_, _cand_):
81
        path = self._get_file_path(_cand_.func_)
82
        meta_data = self._collect(_cand_)
83
84
        meta_data["run"] = self.datetime
85
        self._save_toCSV(meta_data, path)
86
87
        obj_func_path = self.func_path + "objective_function.py"
88
        if not os.path.exists(obj_func_path):
89
            file = open(obj_func_path, "w")
90
            file.write(self._get_func_str(_cand_.func_))
91
            file.close()
92
93
        search_config_path = self.date_path + "search_config.py"
94
        search_config_temp = dict(self._main_args_.search_config)
95
96
        for key in search_config_temp.keys():
97
            if isinstance(key, str):
98
                continue
99
            search_config_temp[key.__name__] = search_config_temp[key]
100
            del search_config_temp[key]
101
102
        search_config_str = "search_config = " + str(search_config_temp)
103
104
        if not os.path.exists(search_config_path):
105
            file = open(search_config_path, "w")
106
            file.write(search_config_str)
107
            file.close()
108
109
        """
110
        os.chdir(self.date_path)
111
        os.system("black search_config.py")
112
        os.getcwd()
113
        """
114
115
        run_data = {
116
            "random_state": self._main_args_.random_state,
117
            "max_time": self._main_args_.random_state,
118
            "n_iter": self._main_args_.n_iter,
119
            "optimizer": self._main_args_.optimizer,
120
            "n_jobs": self._main_args_.n_jobs,
121
            "eval_time": np.array(_cand_.eval_time).sum(),
122
            "total_time": _cand_.total_time,
123
        }
124
125
        with open(self.date_path + "run_data.json", "w") as f:
126
            json.dump(run_data, f, indent=4)
127
128
        """
129
        print("_opt_args_.kwargs_opt", _opt_args_.kwargs_opt)
130
131
        opt_para = pd.DataFrame.from_dict(_opt_args_.kwargs_opt, dtype=object)

hyperactive/extensions/memory/memory.py 1 location

@@ 78-126 (lines=49) @@
75
        self._load_data_into_memory(para, score)
76
        self.n_dims = len(para.columns)
77
78
    def save_memory(self, _main_args_, _opt_args_, _cand_):
79
        path = self._get_file_path(_cand_.func_)
80
        meta_data = self._collect(_cand_)
81
82
        meta_data["run"] = self.datetime
83
        self._save_toCSV(meta_data, path)
84
85
        obj_func_path = self.func_path + "objective_function.py"
86
        if not os.path.exists(obj_func_path):
87
            file = open(obj_func_path, "w")
88
            file.write(self._get_func_str(_cand_.func_))
89
            file.close()
90
91
        search_config_path = self.date_path + "search_config.py"
92
        search_config_temp = dict(self._main_args_.search_config)
93
94
        for key in search_config_temp.keys():
95
            if isinstance(key, str):
96
                continue
97
            search_config_temp[key.__name__] = search_config_temp[key]
98
            del search_config_temp[key]
99
100
        search_config_str = "search_config = " + str(search_config_temp)
101
102
        if not os.path.exists(search_config_path):
103
            file = open(search_config_path, "w")
104
            file.write(search_config_str)
105
            file.close()
106
107
        """
108
        os.chdir(self.date_path)
109
        os.system("black search_config.py")
110
        os.getcwd()
111
        """
112
113
        run_data = {
114
            "random_state": self._main_args_.random_state,
115
            "max_time": self._main_args_.random_state,
116
            "n_iter": self._main_args_.n_iter,
117
            "optimizer": self._main_args_.optimizer,
118
            "n_jobs": self._main_args_.n_jobs,
119
            "eval_time": np.array(_cand_.eval_time).sum(),
120
            "total_time": _cand_.total_time,
121
        }
122
123
        with open(self.date_path + "run_data.json", "w") as f:
124
            json.dump(run_data, f, indent=4)
125
126
        """
127
        print("_opt_args_.kwargs_opt", _opt_args_.kwargs_opt)
128
129
        opt_para = pd.DataFrame.from_dict(_opt_args_.kwargs_opt, dtype=object)