@@ 285-304 (lines=20) @@ | ||
282 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
283 | ||
284 | ||
285 | def test_Bayesian(): |
|
286 | opt0 = Hyperactive( |
|
287 | search_config, |
|
288 | optimizer="Bayesian", |
|
289 | n_iter=n_iter_min, |
|
290 | random_state=random_state, |
|
291 | warm_start=warm_start, |
|
292 | ) |
|
293 | opt0.search(X, y) |
|
294 | ||
295 | opt1 = Hyperactive( |
|
296 | search_config, |
|
297 | optimizer="Bayesian", |
|
298 | n_iter=n_iter_max, |
|
299 | random_state=random_state, |
|
300 | warm_start=warm_start, |
|
301 | ) |
|
302 | opt1.search(X, y) |
|
303 | ||
304 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
305 | ||
@@ 263-282 (lines=20) @@ | ||
260 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
261 | ||
262 | ||
263 | def test_EvolutionStrategy(): |
|
264 | opt0 = Hyperactive( |
|
265 | search_config, |
|
266 | optimizer="EvolutionStrategy", |
|
267 | n_iter=n_iter_min, |
|
268 | random_state=random_state, |
|
269 | warm_start=warm_start, |
|
270 | ) |
|
271 | opt0.search(X, y) |
|
272 | ||
273 | opt1 = Hyperactive( |
|
274 | search_config, |
|
275 | optimizer="EvolutionStrategy", |
|
276 | n_iter=n_iter_max, |
|
277 | random_state=random_state, |
|
278 | warm_start=warm_start, |
|
279 | ) |
|
280 | opt1.search(X, y) |
|
281 | ||
282 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
283 | ||
284 | ||
285 | def test_Bayesian(): |
|
@@ 241-260 (lines=20) @@ | ||
238 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
239 | ||
240 | ||
241 | def test_ParticleSwarm(): |
|
242 | opt0 = Hyperactive( |
|
243 | search_config, |
|
244 | optimizer="ParticleSwarm", |
|
245 | n_iter=n_iter_min, |
|
246 | random_state=random_state, |
|
247 | warm_start=warm_start, |
|
248 | ) |
|
249 | opt0.search(X, y) |
|
250 | ||
251 | opt1 = Hyperactive( |
|
252 | search_config, |
|
253 | optimizer="ParticleSwarm", |
|
254 | n_iter=n_iter_max, |
|
255 | random_state=random_state, |
|
256 | warm_start=warm_start, |
|
257 | ) |
|
258 | opt1.search(X, y) |
|
259 | ||
260 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
261 | ||
262 | ||
263 | def test_EvolutionStrategy(): |
|
@@ 219-238 (lines=20) @@ | ||
216 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
217 | ||
218 | ||
219 | def test_ParallelTempering(): |
|
220 | opt0 = Hyperactive( |
|
221 | search_config, |
|
222 | optimizer="ParallelTempering", |
|
223 | n_iter=n_iter_min, |
|
224 | random_state=random_state, |
|
225 | warm_start=warm_start, |
|
226 | ) |
|
227 | opt0.search(X, y) |
|
228 | ||
229 | opt1 = Hyperactive( |
|
230 | search_config, |
|
231 | optimizer="ParallelTempering", |
|
232 | n_iter=n_iter_max, |
|
233 | random_state=random_state, |
|
234 | warm_start=warm_start, |
|
235 | ) |
|
236 | opt1.search(X, y) |
|
237 | ||
238 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
239 | ||
240 | ||
241 | def test_ParticleSwarm(): |
|
@@ 197-216 (lines=20) @@ | ||
194 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
195 | ||
196 | ||
197 | def test_StochasticTunneling(): |
|
198 | opt0 = Hyperactive( |
|
199 | search_config, |
|
200 | optimizer="StochasticTunneling", |
|
201 | n_iter=n_iter_min, |
|
202 | random_state=random_state, |
|
203 | warm_start=warm_start, |
|
204 | ) |
|
205 | opt0.search(X, y) |
|
206 | ||
207 | opt1 = Hyperactive( |
|
208 | search_config, |
|
209 | optimizer="StochasticTunneling", |
|
210 | n_iter=n_iter_max, |
|
211 | random_state=random_state, |
|
212 | warm_start=warm_start, |
|
213 | ) |
|
214 | opt1.search(X, y) |
|
215 | ||
216 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
217 | ||
218 | ||
219 | def test_ParallelTempering(): |
|
@@ 175-194 (lines=20) @@ | ||
172 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
173 | ||
174 | ||
175 | def test_SimulatedAnnealing(): |
|
176 | opt0 = Hyperactive( |
|
177 | search_config, |
|
178 | optimizer="SimulatedAnnealing", |
|
179 | n_iter=n_iter_min, |
|
180 | random_state=random_state, |
|
181 | warm_start=warm_start, |
|
182 | ) |
|
183 | opt0.search(X, y) |
|
184 | ||
185 | opt1 = Hyperactive( |
|
186 | search_config, |
|
187 | optimizer="SimulatedAnnealing", |
|
188 | n_iter=n_iter_max, |
|
189 | random_state=random_state, |
|
190 | warm_start=warm_start, |
|
191 | ) |
|
192 | opt1.search(X, y) |
|
193 | ||
194 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
195 | ||
196 | ||
197 | def test_StochasticTunneling(): |
|
@@ 153-172 (lines=20) @@ | ||
150 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
151 | ||
152 | ||
153 | def test_RandomAnnealing(): |
|
154 | opt0 = Hyperactive( |
|
155 | search_config, |
|
156 | optimizer="RandomAnnealing", |
|
157 | n_iter=n_iter_min, |
|
158 | random_state=random_state, |
|
159 | warm_start=warm_start, |
|
160 | ) |
|
161 | opt0.search(X, y) |
|
162 | ||
163 | opt1 = Hyperactive( |
|
164 | search_config, |
|
165 | optimizer="RandomAnnealing", |
|
166 | n_iter=n_iter_max, |
|
167 | random_state=random_state, |
|
168 | warm_start=warm_start, |
|
169 | ) |
|
170 | opt1.search(X, y) |
|
171 | ||
172 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
173 | ||
174 | ||
175 | def test_SimulatedAnnealing(): |
|
@@ 131-150 (lines=20) @@ | ||
128 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
129 | ||
130 | ||
131 | def test_RandomRestartHillClimbing(): |
|
132 | opt0 = Hyperactive( |
|
133 | search_config, |
|
134 | optimizer="RandomRestartHillClimbing", |
|
135 | n_iter=n_iter_min, |
|
136 | random_state=random_state, |
|
137 | warm_start=warm_start, |
|
138 | ) |
|
139 | opt0.search(X, y) |
|
140 | ||
141 | opt1 = Hyperactive( |
|
142 | search_config, |
|
143 | optimizer="RandomRestartHillClimbing", |
|
144 | n_iter=n_iter_max, |
|
145 | random_state=random_state, |
|
146 | warm_start=warm_start, |
|
147 | ) |
|
148 | opt1.search(X, y) |
|
149 | ||
150 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
151 | ||
152 | ||
153 | def test_RandomAnnealing(): |
|
@@ 109-128 (lines=20) @@ | ||
106 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
107 | ||
108 | ||
109 | def test_RandomSearch(): |
|
110 | opt0 = Hyperactive( |
|
111 | search_config, |
|
112 | optimizer="RandomSearch", |
|
113 | n_iter=n_iter_min, |
|
114 | random_state=random_state, |
|
115 | warm_start=warm_start, |
|
116 | ) |
|
117 | opt0.search(X, y) |
|
118 | ||
119 | opt1 = Hyperactive( |
|
120 | search_config, |
|
121 | optimizer="RandomSearch", |
|
122 | n_iter=n_iter_max, |
|
123 | random_state=random_state, |
|
124 | warm_start=warm_start, |
|
125 | ) |
|
126 | opt1.search(X, y) |
|
127 | ||
128 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
129 | ||
130 | ||
131 | def test_RandomRestartHillClimbing(): |
|
@@ 87-106 (lines=20) @@ | ||
84 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
85 | ||
86 | ||
87 | def test_TabuOptimizer(): |
|
88 | opt0 = Hyperactive( |
|
89 | search_config, |
|
90 | optimizer="TabuSearch", |
|
91 | n_iter=n_iter_min, |
|
92 | random_state=random_state, |
|
93 | warm_start=warm_start, |
|
94 | ) |
|
95 | opt0.search(X, y) |
|
96 | ||
97 | opt1 = Hyperactive( |
|
98 | search_config, |
|
99 | optimizer="TabuSearch", |
|
100 | n_iter=n_iter_max, |
|
101 | random_state=random_state, |
|
102 | warm_start=warm_start, |
|
103 | ) |
|
104 | opt1.search(X, y) |
|
105 | ||
106 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
107 | ||
108 | ||
109 | def test_RandomSearch(): |
|
@@ 65-84 (lines=20) @@ | ||
62 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
63 | ||
64 | ||
65 | def test_StochasticHillClimbing(): |
|
66 | opt0 = Hyperactive( |
|
67 | search_config, |
|
68 | optimizer="StochasticHillClimbing", |
|
69 | n_iter=n_iter_min, |
|
70 | random_state=random_state, |
|
71 | warm_start=warm_start, |
|
72 | ) |
|
73 | opt0.search(X, y) |
|
74 | ||
75 | opt1 = Hyperactive( |
|
76 | search_config, |
|
77 | optimizer="StochasticHillClimbing", |
|
78 | n_iter=n_iter_max, |
|
79 | random_state=random_state, |
|
80 | warm_start=warm_start, |
|
81 | ) |
|
82 | opt1.search(X, y) |
|
83 | ||
84 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
85 | ||
86 | ||
87 | def test_TabuOptimizer(): |
|
@@ 43-62 (lines=20) @@ | ||
40 | warm_start = {model: {"max_depth": [1]}} |
|
41 | ||
42 | ||
43 | def test_HillClimbing(): |
|
44 | opt0 = Hyperactive( |
|
45 | search_config, |
|
46 | optimizer="HillClimbing", |
|
47 | n_iter=n_iter_min, |
|
48 | random_state=random_state, |
|
49 | warm_start=warm_start, |
|
50 | ) |
|
51 | opt0.search(X, y) |
|
52 | ||
53 | opt1 = Hyperactive( |
|
54 | search_config, |
|
55 | optimizer="HillClimbing", |
|
56 | n_iter=n_iter_max, |
|
57 | random_state=random_state, |
|
58 | warm_start=warm_start, |
|
59 | ) |
|
60 | opt1.search(X, y) |
|
61 | ||
62 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
63 | ||
64 | ||
65 | def test_StochasticHillClimbing(): |