examples/optimizers/bayesian_optimization.py 1 location
|
@@ 44-54 (lines=11) @@
|
| 41 |
|
def predict(self, X): |
| 42 |
|
return self.m.predict(X) |
| 43 |
|
|
| 44 |
|
class GPR1: |
| 45 |
|
def __init__(self): |
| 46 |
|
self.gpr = GaussianProcessRegressor( |
| 47 |
|
kernel=Matern(nu=2.5), normalize_y=True, n_restarts_optimizer=10 |
| 48 |
|
) |
| 49 |
|
|
| 50 |
|
def fit(self, X, y): |
| 51 |
|
self.gpr.fit(X, y) |
| 52 |
|
|
| 53 |
|
def predict(self, X): |
| 54 |
|
return self.gpr.predict(X, return_std=True) |
| 55 |
|
|
| 56 |
|
|
| 57 |
|
opt = Hyperactive(X, y) |
hyperactive/opt_args.py 1 location
|
@@ 12-22 (lines=11) @@
|
| 9 |
|
from numpy.random import normal |
| 10 |
|
|
| 11 |
|
|
| 12 |
|
class GPR: |
| 13 |
|
def __init__(self): |
| 14 |
|
self.gpr = GaussianProcessRegressor( |
| 15 |
|
kernel=Matern(nu=2.5), normalize_y=True, n_restarts_optimizer=10 |
| 16 |
|
) |
| 17 |
|
|
| 18 |
|
def fit(self, X, y): |
| 19 |
|
self.gpr.fit(X, y) |
| 20 |
|
|
| 21 |
|
def predict(self, X): |
| 22 |
|
return self.gpr.predict(X, return_std=True) |
| 23 |
|
|
| 24 |
|
|
| 25 |
|
class Arguments: |