Code Duplication    Length = 31-33 lines in 2 locations

examples/examples_v1.x.x/deep_learning/keras_example.py 1 location

@@ 14-46 (lines=33) @@
11
y_test = to_categorical(y_test, 10)
12
13
14
def cnn(para, X_train, y_train):
15
    model = Sequential()
16
    model.add(
17
        Conv2D(para["filter.0"], (3, 3), padding="same", input_shape=X_train.shape[1:])
18
    )
19
    model.add(Activation("relu"))
20
    model.add(Conv2D(para["filter.0"], (3, 3)))
21
    model.add(Activation("relu"))
22
    model.add(MaxPooling2D(pool_size=(2, 2)))
23
    model.add(Dropout(0.25))
24
25
    model.add(Conv2D(para["filter.0"], (3, 3), padding="same"))
26
    model.add(Activation("relu"))
27
    model.add(Conv2D(para["filter.0"], (3, 3)))
28
    model.add(Activation("relu"))
29
    model.add(MaxPooling2D(pool_size=(2, 2)))
30
    model.add(Dropout(0.25))
31
32
    model.add(Flatten())
33
    model.add(Dense(para["layer.0"]))
34
    model.add(Activation("relu"))
35
    model.add(Dropout(0.5))
36
    model.add(Dense(10))
37
    model.add(Activation("softmax"))
38
39
    model.compile(
40
        optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]
41
    )
42
    model.fit(X_train, y_train, epochs=25, batch_size=128)
43
44
    _, score = model.evaluate(x=X_test, y=y_test)
45
46
    return score
47
48
49
search_config = {cnn: {"filter.0": [16, 32, 64, 128], "layer.0": range(100, 1000, 100)}}

examples/deep_learning/Keras.py 1 location

@@ 14-44 (lines=31) @@
11
y_test = to_categorical(y_test, 10)
12
13
14
def cnn(para, X_train, y_train):
15
    nn = Sequential()
16
    nn.add(
17
        Conv2D(para["filter.0"], (3, 3), padding="same", input_shape=X_train.shape[1:])
18
    )
19
    nn.add(Activation("relu"))
20
    nn.add(Conv2D(para["filter.0"], (3, 3)))
21
    nn.add(Activation("relu"))
22
    nn.add(MaxPooling2D(pool_size=(2, 2)))
23
    nn.add(Dropout(0.25))
24
25
    nn.add(Conv2D(para["filter.0"], (3, 3), padding="same"))
26
    nn.add(Activation("relu"))
27
    nn.add(Conv2D(para["filter.0"], (3, 3)))
28
    nn.add(Activation("relu"))
29
    nn.add(MaxPooling2D(pool_size=(2, 2)))
30
    nn.add(Dropout(0.25))
31
32
    nn.add(Flatten())
33
    nn.add(Dense(para["layer.0"]))
34
    nn.add(Activation("relu"))
35
    nn.add(Dropout(0.5))
36
    nn.add(Dense(10))
37
    nn.add(Activation("softmax"))
38
39
    nn.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
40
    nn.fit(X_train, y_train, epochs=25, batch_size=128)
41
42
    _, score = nn.evaluate(x=X_test, y=y_test)
43
44
    return score
45
46
47
search_config = {cnn: {"filter.0": [16, 32, 64, 128], "layer.0": range(100, 1000, 100)}}