|
@@ 47-56 (lines=10) @@
|
| 44 |
|
|
| 45 |
|
|
| 46 |
|
def test_func_return(): |
| 47 |
|
def model1(para, X, y): |
| 48 |
|
model = DecisionTreeClassifier( |
| 49 |
|
criterion=para["criterion"], |
| 50 |
|
max_depth=para["max_depth"], |
| 51 |
|
min_samples_split=para["min_samples_split"], |
| 52 |
|
min_samples_leaf=para["min_samples_leaf"], |
| 53 |
|
) |
| 54 |
|
scores = cross_val_score(model, X, y, cv=3) |
| 55 |
|
|
| 56 |
|
return scores.mean(), model |
| 57 |
|
|
| 58 |
|
search_config1 = { |
| 59 |
|
model1: { |
|
@@ 15-24 (lines=10) @@
|
| 12 |
|
y = data.target |
| 13 |
|
|
| 14 |
|
|
| 15 |
|
def model(para, X, y): |
| 16 |
|
model = DecisionTreeClassifier( |
| 17 |
|
criterion=para["criterion"], |
| 18 |
|
max_depth=para["max_depth"], |
| 19 |
|
min_samples_split=para["min_samples_split"], |
| 20 |
|
min_samples_leaf=para["min_samples_leaf"], |
| 21 |
|
) |
| 22 |
|
scores = cross_val_score(model, X, y, cv=3) |
| 23 |
|
|
| 24 |
|
return scores.mean() |
| 25 |
|
|
| 26 |
|
|
| 27 |
|
search_config = { |