Code Duplication    Length = 25-25 lines in 2 locations

tests/test_packages.py 2 locations

@@ 41-65 (lines=25) @@
38
    opt.search(X, y)
39
40
41
def test_sklearn():
42
    from sklearn.tree import DecisionTreeClassifier
43
44
    def model(para, X_train, y_train):
45
        model = DecisionTreeClassifier(
46
            criterion=para["criterion"],
47
            max_depth=para["max_depth"],
48
            min_samples_split=para["min_samples_split"],
49
            min_samples_leaf=para["min_samples_leaf"],
50
        )
51
        scores = cross_val_score(model, X_train, y_train, cv=3)
52
53
        return scores.mean()
54
55
    search_config = {
56
        model: {
57
            "criterion": ["gini", "entropy"],
58
            "max_depth": range(1, 21),
59
            "min_samples_split": range(2, 21),
60
            "min_samples_leaf": range(1, 21),
61
        }
62
    }
63
64
    opt = Hyperactive(search_config)
65
    opt.search(X, y)
66
    # opt.predict(X)
67
    # opt.score(X, y)
68
@@ 14-38 (lines=25) @@
11
X, y = data.data, data.target
12
13
14
def test_meta_learn():
15
    from sklearn.tree import DecisionTreeClassifier
16
17
    def model(para, X_train, y_train):
18
        model = DecisionTreeClassifier(
19
            criterion=para["criterion"],
20
            max_depth=para["max_depth"],
21
            min_samples_split=para["min_samples_split"],
22
            min_samples_leaf=para["min_samples_leaf"],
23
        )
24
        scores = cross_val_score(model, X_train, y_train, cv=3)
25
26
        return scores.mean()
27
28
    search_config = {
29
        model: {
30
            "criterion": ["gini", "entropy"],
31
            "max_depth": range(1, 21),
32
            "min_samples_split": range(2, 21),
33
            "min_samples_leaf": range(1, 21),
34
        }
35
    }
36
37
    opt = Hyperactive(search_config, meta_learn=True)
38
    opt.search(X, y)
39
40
41
def test_sklearn():