| @@ 41-65 (lines=25) @@ | ||
| 38 | opt.search(X, y) |
|
| 39 | ||
| 40 | ||
| 41 | def test_sklearn(): |
|
| 42 | from sklearn.tree import DecisionTreeClassifier |
|
| 43 | ||
| 44 | def model(para, X_train, y_train): |
|
| 45 | model = DecisionTreeClassifier( |
|
| 46 | criterion=para["criterion"], |
|
| 47 | max_depth=para["max_depth"], |
|
| 48 | min_samples_split=para["min_samples_split"], |
|
| 49 | min_samples_leaf=para["min_samples_leaf"], |
|
| 50 | ) |
|
| 51 | scores = cross_val_score(model, X_train, y_train, cv=3) |
|
| 52 | ||
| 53 | return scores.mean() |
|
| 54 | ||
| 55 | search_config = { |
|
| 56 | model: { |
|
| 57 | "criterion": ["gini", "entropy"], |
|
| 58 | "max_depth": range(1, 21), |
|
| 59 | "min_samples_split": range(2, 21), |
|
| 60 | "min_samples_leaf": range(1, 21), |
|
| 61 | } |
|
| 62 | } |
|
| 63 | ||
| 64 | opt = Hyperactive(search_config) |
|
| 65 | opt.search(X, y) |
|
| 66 | # opt.predict(X) |
|
| 67 | # opt.score(X, y) |
|
| 68 | ||
| @@ 14-38 (lines=25) @@ | ||
| 11 | X, y = data.data, data.target |
|
| 12 | ||
| 13 | ||
| 14 | def test_meta_learn(): |
|
| 15 | from sklearn.tree import DecisionTreeClassifier |
|
| 16 | ||
| 17 | def model(para, X_train, y_train): |
|
| 18 | model = DecisionTreeClassifier( |
|
| 19 | criterion=para["criterion"], |
|
| 20 | max_depth=para["max_depth"], |
|
| 21 | min_samples_split=para["min_samples_split"], |
|
| 22 | min_samples_leaf=para["min_samples_leaf"], |
|
| 23 | ) |
|
| 24 | scores = cross_val_score(model, X_train, y_train, cv=3) |
|
| 25 | ||
| 26 | return scores.mean() |
|
| 27 | ||
| 28 | search_config = { |
|
| 29 | model: { |
|
| 30 | "criterion": ["gini", "entropy"], |
|
| 31 | "max_depth": range(1, 21), |
|
| 32 | "min_samples_split": range(2, 21), |
|
| 33 | "min_samples_leaf": range(1, 21), |
|
| 34 | } |
|
| 35 | } |
|
| 36 | ||
| 37 | opt = Hyperactive(search_config, meta_learn=True) |
|
| 38 | opt.search(X, y) |
|
| 39 | ||
| 40 | ||
| 41 | def test_sklearn(): |
|