Code Duplication    Length = 10-10 lines in 5 locations

tests/test_performance.py 1 location

@@ 19-28 (lines=10) @@
16
n_iter_max = 100
17
18
19
def model(para, X_train, y_train):
20
    model = DecisionTreeClassifier(
21
        criterion=para["criterion"],
22
        max_depth=para["max_depth"],
23
        min_samples_split=para["min_samples_split"],
24
        min_samples_leaf=para["min_samples_leaf"],
25
    )
26
    scores = cross_val_score(model, X_train, y_train, cv=2)
27
28
    return scores.mean()
29
30
31
search_config = {

tests/test_methods.py 1 location

@@ 17-26 (lines=10) @@
14
n_iter = 1
15
16
17
def model(para, X_train, y_train):
18
    model = DecisionTreeClassifier(
19
        criterion=para["criterion"],
20
        max_depth=para["max_depth"],
21
        min_samples_split=para["min_samples_split"],
22
        min_samples_leaf=para["min_samples_leaf"],
23
    )
24
    scores = cross_val_score(model, X_train, y_train, cv=2)
25
26
    return scores.mean()
27
28
29
search_config = {

tests/test_optimizers.py 1 location

@@ 17-26 (lines=10) @@
14
n_iter = 1
15
16
17
def model(para, X_train, y_train):
18
    model = DecisionTreeClassifier(
19
        criterion=para["criterion"],
20
        max_depth=para["max_depth"],
21
        min_samples_split=para["min_samples_split"],
22
        min_samples_leaf=para["min_samples_leaf"],
23
    )
24
    scores = cross_val_score(model, X_train, y_train, cv=2)
25
26
    return scores.mean()
27
28
29
search_config = {

tests/test_packages.py 1 location

@@ 17-26 (lines=10) @@
14
def test_sklearn():
15
    from sklearn.tree import DecisionTreeClassifier
16
17
    def model(para, X_train, y_train):
18
        model = DecisionTreeClassifier(
19
            criterion=para["criterion"],
20
            max_depth=para["max_depth"],
21
            min_samples_split=para["min_samples_split"],
22
            min_samples_leaf=para["min_samples_leaf"],
23
        )
24
        scores = cross_val_score(model, X_train, y_train, cv=3)
25
26
        return scores.mean()
27
28
    search_config = {
29
        model: {

tests/_test_meta_learn.py 1 location

@@ 16-25 (lines=10) @@
13
y = data.target
14
15
16
def model(para, X_train, y_train):
17
    model = DecisionTreeClassifier(
18
        criterion=para["criterion"],
19
        max_depth=para["max_depth"],
20
        min_samples_split=para["min_samples_split"],
21
        min_samples_leaf=para["min_samples_leaf"],
22
    )
23
    scores = cross_val_score(model, X_train, y_train, cv=3)
24
25
    return scores.mean(), model
26
27
28
search_config = {