| @@ 285-304 (lines=20) @@ | ||
| 282 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 283 | ||
| 284 | ||
| 285 | def test_Bayesian(): |
|
| 286 | opt0 = Hyperactive( |
|
| 287 | search_config, |
|
| 288 | optimizer="Bayesian", |
|
| 289 | n_iter=n_iter_min, |
|
| 290 | random_state=random_state, |
|
| 291 | warm_start=warm_start, |
|
| 292 | ) |
|
| 293 | opt0.fit(X, y) |
|
| 294 | ||
| 295 | opt1 = Hyperactive( |
|
| 296 | search_config, |
|
| 297 | optimizer="Bayesian", |
|
| 298 | n_iter=n_iter_max, |
|
| 299 | random_state=random_state, |
|
| 300 | warm_start=warm_start, |
|
| 301 | ) |
|
| 302 | opt1.fit(X, y) |
|
| 303 | ||
| 304 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 305 | ||
| @@ 263-282 (lines=20) @@ | ||
| 260 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 261 | ||
| 262 | ||
| 263 | def test_EvolutionStrategy(): |
|
| 264 | opt0 = Hyperactive( |
|
| 265 | search_config, |
|
| 266 | optimizer="EvolutionStrategy", |
|
| 267 | n_iter=n_iter_min, |
|
| 268 | random_state=random_state, |
|
| 269 | warm_start=warm_start, |
|
| 270 | ) |
|
| 271 | opt0.fit(X, y) |
|
| 272 | ||
| 273 | opt1 = Hyperactive( |
|
| 274 | search_config, |
|
| 275 | optimizer="EvolutionStrategy", |
|
| 276 | n_iter=n_iter_max, |
|
| 277 | random_state=random_state, |
|
| 278 | warm_start=warm_start, |
|
| 279 | ) |
|
| 280 | opt1.fit(X, y) |
|
| 281 | ||
| 282 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 283 | ||
| 284 | ||
| 285 | def test_Bayesian(): |
|
| @@ 241-260 (lines=20) @@ | ||
| 238 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 239 | ||
| 240 | ||
| 241 | def test_ParticleSwarm(): |
|
| 242 | opt0 = Hyperactive( |
|
| 243 | search_config, |
|
| 244 | optimizer="ParticleSwarm", |
|
| 245 | n_iter=n_iter_min, |
|
| 246 | random_state=random_state, |
|
| 247 | warm_start=warm_start, |
|
| 248 | ) |
|
| 249 | opt0.fit(X, y) |
|
| 250 | ||
| 251 | opt1 = Hyperactive( |
|
| 252 | search_config, |
|
| 253 | optimizer="ParticleSwarm", |
|
| 254 | n_iter=n_iter_max, |
|
| 255 | random_state=random_state, |
|
| 256 | warm_start=warm_start, |
|
| 257 | ) |
|
| 258 | opt1.fit(X, y) |
|
| 259 | ||
| 260 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 261 | ||
| 262 | ||
| 263 | def test_EvolutionStrategy(): |
|
| @@ 219-238 (lines=20) @@ | ||
| 216 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 217 | ||
| 218 | ||
| 219 | def test_ParallelTempering(): |
|
| 220 | opt0 = Hyperactive( |
|
| 221 | search_config, |
|
| 222 | optimizer="ParallelTempering", |
|
| 223 | n_iter=n_iter_min, |
|
| 224 | random_state=random_state, |
|
| 225 | warm_start=warm_start, |
|
| 226 | ) |
|
| 227 | opt0.fit(X, y) |
|
| 228 | ||
| 229 | opt1 = Hyperactive( |
|
| 230 | search_config, |
|
| 231 | optimizer="ParallelTempering", |
|
| 232 | n_iter=n_iter_max, |
|
| 233 | random_state=random_state, |
|
| 234 | warm_start=warm_start, |
|
| 235 | ) |
|
| 236 | opt1.fit(X, y) |
|
| 237 | ||
| 238 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 239 | ||
| 240 | ||
| 241 | def test_ParticleSwarm(): |
|
| @@ 197-216 (lines=20) @@ | ||
| 194 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 195 | ||
| 196 | ||
| 197 | def test_StochasticTunneling(): |
|
| 198 | opt0 = Hyperactive( |
|
| 199 | search_config, |
|
| 200 | optimizer="StochasticTunneling", |
|
| 201 | n_iter=n_iter_min, |
|
| 202 | random_state=random_state, |
|
| 203 | warm_start=warm_start, |
|
| 204 | ) |
|
| 205 | opt0.fit(X, y) |
|
| 206 | ||
| 207 | opt1 = Hyperactive( |
|
| 208 | search_config, |
|
| 209 | optimizer="StochasticTunneling", |
|
| 210 | n_iter=n_iter_max, |
|
| 211 | random_state=random_state, |
|
| 212 | warm_start=warm_start, |
|
| 213 | ) |
|
| 214 | opt1.fit(X, y) |
|
| 215 | ||
| 216 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 217 | ||
| 218 | ||
| 219 | def test_ParallelTempering(): |
|
| @@ 175-194 (lines=20) @@ | ||
| 172 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 173 | ||
| 174 | ||
| 175 | def test_SimulatedAnnealing(): |
|
| 176 | opt0 = Hyperactive( |
|
| 177 | search_config, |
|
| 178 | optimizer="SimulatedAnnealing", |
|
| 179 | n_iter=n_iter_min, |
|
| 180 | random_state=random_state, |
|
| 181 | warm_start=warm_start, |
|
| 182 | ) |
|
| 183 | opt0.fit(X, y) |
|
| 184 | ||
| 185 | opt1 = Hyperactive( |
|
| 186 | search_config, |
|
| 187 | optimizer="SimulatedAnnealing", |
|
| 188 | n_iter=n_iter_max, |
|
| 189 | random_state=random_state, |
|
| 190 | warm_start=warm_start, |
|
| 191 | ) |
|
| 192 | opt1.fit(X, y) |
|
| 193 | ||
| 194 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 195 | ||
| 196 | ||
| 197 | def test_StochasticTunneling(): |
|
| @@ 153-172 (lines=20) @@ | ||
| 150 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 151 | ||
| 152 | ||
| 153 | def test_RandomAnnealing(): |
|
| 154 | opt0 = Hyperactive( |
|
| 155 | search_config, |
|
| 156 | optimizer="RandomAnnealing", |
|
| 157 | n_iter=n_iter_min, |
|
| 158 | random_state=random_state, |
|
| 159 | warm_start=warm_start, |
|
| 160 | ) |
|
| 161 | opt0.fit(X, y) |
|
| 162 | ||
| 163 | opt1 = Hyperactive( |
|
| 164 | search_config, |
|
| 165 | optimizer="RandomAnnealing", |
|
| 166 | n_iter=n_iter_max, |
|
| 167 | random_state=random_state, |
|
| 168 | warm_start=warm_start, |
|
| 169 | ) |
|
| 170 | opt1.fit(X, y) |
|
| 171 | ||
| 172 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 173 | ||
| 174 | ||
| 175 | def test_SimulatedAnnealing(): |
|
| @@ 131-150 (lines=20) @@ | ||
| 128 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 129 | ||
| 130 | ||
| 131 | def test_RandomRestartHillClimbing(): |
|
| 132 | opt0 = Hyperactive( |
|
| 133 | search_config, |
|
| 134 | optimizer="RandomRestartHillClimbing", |
|
| 135 | n_iter=n_iter_min, |
|
| 136 | random_state=random_state, |
|
| 137 | warm_start=warm_start, |
|
| 138 | ) |
|
| 139 | opt0.fit(X, y) |
|
| 140 | ||
| 141 | opt1 = Hyperactive( |
|
| 142 | search_config, |
|
| 143 | optimizer="RandomRestartHillClimbing", |
|
| 144 | n_iter=n_iter_max, |
|
| 145 | random_state=random_state, |
|
| 146 | warm_start=warm_start, |
|
| 147 | ) |
|
| 148 | opt1.fit(X, y) |
|
| 149 | ||
| 150 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 151 | ||
| 152 | ||
| 153 | def test_RandomAnnealing(): |
|
| @@ 109-128 (lines=20) @@ | ||
| 106 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 107 | ||
| 108 | ||
| 109 | def test_RandomSearch(): |
|
| 110 | opt0 = Hyperactive( |
|
| 111 | search_config, |
|
| 112 | optimizer="RandomSearch", |
|
| 113 | n_iter=n_iter_min, |
|
| 114 | random_state=random_state, |
|
| 115 | warm_start=warm_start, |
|
| 116 | ) |
|
| 117 | opt0.fit(X, y) |
|
| 118 | ||
| 119 | opt1 = Hyperactive( |
|
| 120 | search_config, |
|
| 121 | optimizer="RandomSearch", |
|
| 122 | n_iter=n_iter_max, |
|
| 123 | random_state=random_state, |
|
| 124 | warm_start=warm_start, |
|
| 125 | ) |
|
| 126 | opt1.fit(X, y) |
|
| 127 | ||
| 128 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 129 | ||
| 130 | ||
| 131 | def test_RandomRestartHillClimbing(): |
|
| @@ 87-106 (lines=20) @@ | ||
| 84 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 85 | ||
| 86 | ||
| 87 | def test_TabuOptimizer(): |
|
| 88 | opt0 = Hyperactive( |
|
| 89 | search_config, |
|
| 90 | optimizer="TabuSearch", |
|
| 91 | n_iter=n_iter_min, |
|
| 92 | random_state=random_state, |
|
| 93 | warm_start=warm_start, |
|
| 94 | ) |
|
| 95 | opt0.fit(X, y) |
|
| 96 | ||
| 97 | opt1 = Hyperactive( |
|
| 98 | search_config, |
|
| 99 | optimizer="TabuSearch", |
|
| 100 | n_iter=n_iter_max, |
|
| 101 | random_state=random_state, |
|
| 102 | warm_start=warm_start, |
|
| 103 | ) |
|
| 104 | opt1.fit(X, y) |
|
| 105 | ||
| 106 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 107 | ||
| 108 | ||
| 109 | def test_RandomSearch(): |
|
| @@ 65-84 (lines=20) @@ | ||
| 62 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 63 | ||
| 64 | ||
| 65 | def test_StochasticHillClimbing(): |
|
| 66 | opt0 = Hyperactive( |
|
| 67 | search_config, |
|
| 68 | optimizer="StochasticHillClimbing", |
|
| 69 | n_iter=n_iter_min, |
|
| 70 | random_state=random_state, |
|
| 71 | warm_start=warm_start, |
|
| 72 | ) |
|
| 73 | opt0.fit(X, y) |
|
| 74 | ||
| 75 | opt1 = Hyperactive( |
|
| 76 | search_config, |
|
| 77 | optimizer="StochasticHillClimbing", |
|
| 78 | n_iter=n_iter_max, |
|
| 79 | random_state=random_state, |
|
| 80 | warm_start=warm_start, |
|
| 81 | ) |
|
| 82 | opt1.fit(X, y) |
|
| 83 | ||
| 84 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 85 | ||
| 86 | ||
| 87 | def test_TabuOptimizer(): |
|
| @@ 43-62 (lines=20) @@ | ||
| 40 | warm_start = {model: {"max_depth": [1]}} |
|
| 41 | ||
| 42 | ||
| 43 | def test_HillClimbing(): |
|
| 44 | opt0 = Hyperactive( |
|
| 45 | search_config, |
|
| 46 | optimizer="HillClimbing", |
|
| 47 | n_iter=n_iter_min, |
|
| 48 | random_state=random_state, |
|
| 49 | warm_start=warm_start, |
|
| 50 | ) |
|
| 51 | opt0.fit(X, y) |
|
| 52 | ||
| 53 | opt1 = Hyperactive( |
|
| 54 | search_config, |
|
| 55 | optimizer="HillClimbing", |
|
| 56 | n_iter=n_iter_max, |
|
| 57 | random_state=random_state, |
|
| 58 | warm_start=warm_start, |
|
| 59 | ) |
|
| 60 | opt1.fit(X, y) |
|
| 61 | ||
| 62 | assert opt0._optimizer_.score_best < opt1._optimizer_.score_best |
|
| 63 | ||
| 64 | ||
| 65 | def test_StochasticHillClimbing(): |
|