Code Duplication    Length = 10-10 lines in 4 locations

tests/test_data.py 1 location

@@ 19-28 (lines=10) @@
16
y_pd = pd.DataFrame(y_np, columns=["y1"])
17
18
19
def model(para, X_train, y_train):
20
    model = DecisionTreeClassifier(
21
        criterion=para["criterion"],
22
        max_depth=para["max_depth"],
23
        min_samples_split=para["min_samples_split"],
24
        min_samples_leaf=para["min_samples_leaf"],
25
    )
26
    scores = cross_val_score(model, X_train, y_train, cv=3)
27
28
    return scores.mean(), model
29
30
31
search_config = {

tests/test_packages.py 1 location

@@ 17-26 (lines=10) @@
14
def test_sklearn():
15
    from sklearn.tree import DecisionTreeClassifier
16
17
    def model(para, X_train, y_train):
18
        model = DecisionTreeClassifier(
19
            criterion=para["criterion"],
20
            max_depth=para["max_depth"],
21
            min_samples_split=para["min_samples_split"],
22
            min_samples_leaf=para["min_samples_leaf"],
23
        )
24
        scores = cross_val_score(model, X_train, y_train, cv=3)
25
26
        return scores.mean(), model
27
28
    search_config = {
29
        model: {

tests/test_arguments_api.py 1 location

@@ 15-24 (lines=10) @@
12
y = data.target
13
14
15
def model(para, X_train, y_train):
16
    model = DecisionTreeClassifier(
17
        criterion=para["criterion"],
18
        max_depth=para["max_depth"],
19
        min_samples_split=para["min_samples_split"],
20
        min_samples_leaf=para["min_samples_leaf"],
21
    )
22
    scores = cross_val_score(model, X_train, y_train, cv=3)
23
24
    return scores.mean(), model
25
26
27
search_config = {

tests/test_optimizers.py 1 location

@@ 15-24 (lines=10) @@
12
y = data.target
13
14
15
def model(para, X_train, y_train):
16
    model = DecisionTreeClassifier(
17
        criterion=para["criterion"],
18
        max_depth=para["max_depth"],
19
        min_samples_split=para["min_samples_split"],
20
        min_samples_leaf=para["min_samples_leaf"],
21
    )
22
    scores = cross_val_score(model, X_train, y_train, cv=3)
23
24
    return scores.mean(), model
25
26
27
search_config = {