Code Duplication    Length = 13-13 lines in 3 locations

examples/tested_and_supported_packages/multiprocessing_example.py 1 location

@@ 56-68 (lines=13) @@
53
    return scores.mean()
54
55
56
def model_gbc(opt):
57
    gbc = GradientBoostingClassifier(
58
        n_estimators=opt["n_estimators"],
59
        learning_rate=opt["learning_rate"],
60
        max_depth=opt["max_depth"],
61
        min_samples_split=opt["min_samples_split"],
62
        min_samples_leaf=opt["min_samples_leaf"],
63
        subsample=opt["subsample"],
64
        max_features=opt["max_features"],
65
    )
66
    scores = cross_val_score(gbc, X, y, cv=3)
67
68
    return scores.mean()
69
70
71
search_space_etc = {

examples/tested_and_supported_packages/joblib_example.py 1 location

@@ 42-54 (lines=13) @@
39
    return scores.mean()
40
41
42
def model_gbc(opt):
43
    gbc = GradientBoostingClassifier(
44
        n_estimators=opt["n_estimators"],
45
        learning_rate=opt["learning_rate"],
46
        max_depth=opt["max_depth"],
47
        min_samples_split=opt["min_samples_split"],
48
        min_samples_leaf=opt["min_samples_leaf"],
49
        subsample=opt["subsample"],
50
        max_features=opt["max_features"],
51
    )
52
    scores = cross_val_score(gbc, X, y, cv=3)
53
54
    return scores.mean()
55
56
57
search_space_etc = {

examples/optimization_applications/multiple_different_optimizers.py 1 location

@@ 32-44 (lines=13) @@
29
    return scores.mean()
30
31
32
def model_gbc(opt):
33
    gbc = GradientBoostingClassifier(
34
        n_estimators=opt["n_estimators"],
35
        learning_rate=opt["learning_rate"],
36
        max_depth=opt["max_depth"],
37
        min_samples_split=opt["min_samples_split"],
38
        min_samples_leaf=opt["min_samples_leaf"],
39
        subsample=opt["subsample"],
40
        max_features=opt["max_features"],
41
    )
42
    scores = cross_val_score(gbc, X, y, cv=3)
43
44
    return scores.mean()
45
46
47
search_space_rfc = {