@@ 110-163 (lines=54) @@ | ||
107 | ||
108 | return optuna.samplers.QMCSampler(**optimizer_kwargs) |
|
109 | ||
110 | @classmethod |
|
111 | def get_test_params(cls, parameter_set="default"): |
|
112 | """Return testing parameter settings for the optimizer.""" |
|
113 | from sklearn.datasets import load_iris |
|
114 | from sklearn.linear_model import LogisticRegression |
|
115 | ||
116 | from hyperactive.experiment.integrations import SklearnCvExperiment |
|
117 | ||
118 | # Test case 1: Halton sequence without scrambling |
|
119 | params = super().get_test_params(parameter_set) |
|
120 | params[0].update( |
|
121 | { |
|
122 | "qmc_type": "halton", |
|
123 | "scramble": False, |
|
124 | } |
|
125 | ) |
|
126 | ||
127 | # Test case 2: Sobol sequence with scrambling |
|
128 | X, y = load_iris(return_X_y=True) |
|
129 | lr_exp = SklearnCvExperiment( |
|
130 | estimator=LogisticRegression(random_state=42, max_iter=1000), X=X, y=y |
|
131 | ) |
|
132 | ||
133 | mixed_param_space = { |
|
134 | "C": (0.01, 100), # Continuous |
|
135 | "penalty": [ |
|
136 | "l1", |
|
137 | "l2", |
|
138 | ], # Categorical - removed elasticnet to avoid solver conflicts |
|
139 | "solver": ["liblinear", "saga"], # Categorical |
|
140 | } |
|
141 | ||
142 | params.append( |
|
143 | { |
|
144 | "param_space": mixed_param_space, |
|
145 | "n_trials": 16, # Power of 2 for better QMC properties |
|
146 | "experiment": lr_exp, |
|
147 | "qmc_type": "sobol", # Different sequence type |
|
148 | "scramble": True, # With scrambling for randomization |
|
149 | } |
|
150 | ) |
|
151 | ||
152 | # Test case 3: Different sampler configuration with same experiment |
|
153 | params.append( |
|
154 | { |
|
155 | "param_space": mixed_param_space, |
|
156 | "n_trials": 8, # Power of 2, good for QMC |
|
157 | "experiment": lr_exp, |
|
158 | "qmc_type": "halton", # Different QMC type |
|
159 | "scramble": False, |
|
160 | } |
|
161 | ) |
|
162 | ||
163 | return params |
|
164 |
@@ 115-158 (lines=44) @@ | ||
112 | ||
113 | return optuna.samplers.NSGAIISampler(**optimizer_kwargs) |
|
114 | ||
115 | @classmethod |
|
116 | def get_test_params(cls, parameter_set="default"): |
|
117 | """Return testing parameter settings for the optimizer.""" |
|
118 | from sklearn.datasets import load_iris |
|
119 | from sklearn.ensemble import RandomForestClassifier |
|
120 | ||
121 | from hyperactive.experiment.integrations import SklearnCvExperiment |
|
122 | ||
123 | # Test case 1: Basic single-objective (inherits from base) |
|
124 | params = super().get_test_params(parameter_set) |
|
125 | params[0].update( |
|
126 | { |
|
127 | "population_size": 20, |
|
128 | "mutation_prob": 0.2, |
|
129 | "crossover_prob": 0.8, |
|
130 | } |
|
131 | ) |
|
132 | ||
133 | # Test case 2: Multi-objective with mixed parameter types |
|
134 | X, y = load_iris(return_X_y=True) |
|
135 | rf_exp = SklearnCvExperiment( |
|
136 | estimator=RandomForestClassifier(random_state=42), X=X, y=y |
|
137 | ) |
|
138 | ||
139 | mixed_param_space = { |
|
140 | "n_estimators": (10, 50), # Continuous integer |
|
141 | "max_depth": [3, 5, 7, None], # Mixed discrete/None |
|
142 | "criterion": ["gini", "entropy"], # Categorical |
|
143 | "min_samples_split": (2, 10), # Continuous integer |
|
144 | "bootstrap": [True, False], # Boolean categorical |
|
145 | } |
|
146 | ||
147 | params.append( |
|
148 | { |
|
149 | "param_space": mixed_param_space, |
|
150 | "n_trials": 15, # Smaller for faster testing |
|
151 | "experiment": rf_exp, |
|
152 | "population_size": 8, # Smaller population for testing |
|
153 | "mutation_prob": 0.1, |
|
154 | "crossover_prob": 0.9, |
|
155 | } |
|
156 | ) |
|
157 | ||
158 | return params |
|
159 |