|
@@ 99-118 (lines=20) @@
|
| 96 |
|
hyper1.run() |
| 97 |
|
|
| 98 |
|
|
| 99 |
|
@pytest.mark.parametrize("smbo_opt", smbo_opts) |
| 100 |
|
def test_warm_start_smbo_1(smbo_opt): |
| 101 |
|
hyper0 = Hyperactive(distribution="pathos") |
| 102 |
|
hyper0.add_search( |
| 103 |
|
_objective_function, |
| 104 |
|
search_space, |
| 105 |
|
n_iter=n_iter, |
| 106 |
|
n_jobs=2, |
| 107 |
|
initialize=initialize, |
| 108 |
|
) |
| 109 |
|
hyper0.run() |
| 110 |
|
|
| 111 |
|
search_data0 = hyper0.search_data(_objective_function) |
| 112 |
|
smbo_opt_ = smbo_opt(warm_start_smbo=search_data0) |
| 113 |
|
|
| 114 |
|
hyper1 = Hyperactive() |
| 115 |
|
hyper1.add_search( |
| 116 |
|
_objective_function, search_space, n_iter=n_iter, optimizer=smbo_opt_ |
| 117 |
|
) |
| 118 |
|
hyper1.run() |
| 119 |
|
|
| 120 |
|
|
| 121 |
|
@pytest.mark.parametrize("smbo_opt", smbo_opts) |
|
@@ 142-160 (lines=19) @@
|
| 139 |
|
hyper1.run() |
| 140 |
|
|
| 141 |
|
|
| 142 |
|
@pytest.mark.parametrize("smbo_opt", smbo_opts) |
| 143 |
|
def test_warm_start_smbo_3(smbo_opt): |
| 144 |
|
hyper0 = Hyperactive(distribution="pathos") |
| 145 |
|
hyper0.add_search(_objective_function, search_space, n_iter=n_iter, n_jobs=2) |
| 146 |
|
hyper0.run() |
| 147 |
|
|
| 148 |
|
search_data0 = hyper0.search_data(_objective_function) |
| 149 |
|
smbo_opt_ = smbo_opt(warm_start_smbo=search_data0) |
| 150 |
|
|
| 151 |
|
hyper1 = Hyperactive(distribution="joblib") |
| 152 |
|
hyper1.add_search( |
| 153 |
|
_objective_function, |
| 154 |
|
search_space, |
| 155 |
|
n_iter=n_iter, |
| 156 |
|
n_jobs=2, |
| 157 |
|
optimizer=smbo_opt_, |
| 158 |
|
initialize=initialize, |
| 159 |
|
) |
| 160 |
|
hyper1.run() |
| 161 |
|
|
|
@@ 121-139 (lines=19) @@
|
| 118 |
|
hyper1.run() |
| 119 |
|
|
| 120 |
|
|
| 121 |
|
@pytest.mark.parametrize("smbo_opt", smbo_opts) |
| 122 |
|
def test_warm_start_smbo_2(smbo_opt): |
| 123 |
|
hyper0 = Hyperactive() |
| 124 |
|
hyper0.add_search(_objective_function, search_space, n_iter=n_iter) |
| 125 |
|
hyper0.run() |
| 126 |
|
|
| 127 |
|
search_data0 = hyper0.search_data(_objective_function) |
| 128 |
|
smbo_opt_ = smbo_opt(warm_start_smbo=search_data0) |
| 129 |
|
|
| 130 |
|
hyper1 = Hyperactive(distribution="joblib") |
| 131 |
|
hyper1.add_search( |
| 132 |
|
_objective_function, |
| 133 |
|
search_space, |
| 134 |
|
n_iter=n_iter, |
| 135 |
|
n_jobs=2, |
| 136 |
|
optimizer=smbo_opt_, |
| 137 |
|
initialize=initialize, |
| 138 |
|
) |
| 139 |
|
hyper1.run() |
| 140 |
|
|
| 141 |
|
|
| 142 |
|
@pytest.mark.parametrize("smbo_opt", smbo_opts) |