examples/optimization_applications/meta_optimization.py 1 location
|
@@ 14-24 (lines=11) @@
|
| 11 |
|
|
| 12 |
|
for i in range(33): |
| 13 |
|
|
| 14 |
|
def ackley_function(para): |
| 15 |
|
x = para["x"] |
| 16 |
|
y = para["y"] |
| 17 |
|
loss1 = -20 * np.exp(-0.2 * np.sqrt(0.5 * (x * x + y * y))) |
| 18 |
|
loss2 = -np.exp(0.5 * (np.cos(2 * np.pi * x) + np.cos(2 * np.pi * y))) |
| 19 |
|
loss3 = np.exp(1) |
| 20 |
|
loss4 = 20 |
| 21 |
|
|
| 22 |
|
loss = loss1 + loss2 + loss3 + loss4 |
| 23 |
|
|
| 24 |
|
return -loss |
| 25 |
|
|
| 26 |
|
dim_size = np.arange(-6, 6, 0.01) |
| 27 |
|
|
src/hyperactive/experiment/toy/_ackley.py 1 location
|
@@ 45-54 (lines=10) @@
|
| 42 |
|
def _paramnames(self): |
| 43 |
|
return ["x0", "x1"] |
| 44 |
|
|
| 45 |
|
def _score(self, params): |
| 46 |
|
x = params["x0"] |
| 47 |
|
y = params["x1"] |
| 48 |
|
|
| 49 |
|
loss1 = -self.A * np.exp(-0.2 * np.sqrt(0.5 * (x * x + y * y))) |
| 50 |
|
loss2 = -np.exp(0.5 * (np.cos(2 * np.pi * x) + np.cos(2 * np.pi * y))) |
| 51 |
|
loss3 = np.exp(1) |
| 52 |
|
loss4 = self.A |
| 53 |
|
|
| 54 |
|
return -(loss1 + loss2 + loss3 + loss4), {} |
| 55 |
|
|
| 56 |
|
@classmethod |
| 57 |
|
def get_test_params(cls, parameter_set="default"): |