examples/optimization_applications/meta_optimization.py 1 location
|
@@ 14-24 (lines=11) @@
|
11 |
|
|
12 |
|
for i in range(33): |
13 |
|
|
14 |
|
def ackley_function(para): |
15 |
|
x = para["x"] |
16 |
|
y = para["y"] |
17 |
|
loss1 = -20 * np.exp(-0.2 * np.sqrt(0.5 * (x * x + y * y))) |
18 |
|
loss2 = -np.exp(0.5 * (np.cos(2 * np.pi * x) + np.cos(2 * np.pi * y))) |
19 |
|
loss3 = np.exp(1) |
20 |
|
loss4 = 20 |
21 |
|
|
22 |
|
loss = loss1 + loss2 + loss3 + loss4 |
23 |
|
|
24 |
|
return -loss |
25 |
|
|
26 |
|
dim_size = np.arange(-6, 6, 0.01) |
27 |
|
|
src/hyperactive/experiment/toy/_ackley.py 1 location
|
@@ 44-53 (lines=10) @@
|
41 |
|
def _paramnames(self): |
42 |
|
return ["x0", "x1"] |
43 |
|
|
44 |
|
def _score(self, params): |
45 |
|
x = params["x0"] |
46 |
|
y = params["x1"] |
47 |
|
|
48 |
|
loss1 = -self.A * np.exp(-0.2 * np.sqrt(0.5 * (x * x + y * y))) |
49 |
|
loss2 = -np.exp(0.5 * (np.cos(2 * np.pi * x) + np.cos(2 * np.pi * y))) |
50 |
|
loss3 = np.exp(1) |
51 |
|
loss4 = self.A |
52 |
|
|
53 |
|
return -(loss1 + loss2 + loss3 + loss4), {} |
54 |
|
|
55 |
|
@classmethod |
56 |
|
def get_test_params(cls, parameter_set="default"): |