| @@ 134-153 (lines=20) @@ | ||
| 131 | search_data["eval_times"] |
|
| 132 | ||
| 133 | ||
| 134 | def test_attributes_results_8(): |
|
| 135 | def objective_function(opt): |
|
| 136 | score = -opt["x1"] * opt["x1"] |
|
| 137 | return score |
|
| 138 | ||
| 139 | search_space = { |
|
| 140 | "x1": list(np.arange(0, 10, 1)), |
|
| 141 | } |
|
| 142 | ||
| 143 | hyper = HillClimbingOptimizer() |
|
| 144 | hyper.add_search( |
|
| 145 | experiment, |
|
| 146 | search_config, |
|
| 147 | n_iter=20, |
|
| 148 | ) |
|
| 149 | hyper.run() |
|
| 150 | ||
| 151 | search_data = hyper.search_data(experiment) |
|
| 152 | with pytest.raises(Exception) as e_info: |
|
| 153 | search_data["iter_times"] |
|
| 154 | ||
| 155 | ||
| 156 | def test_attributes_results_9(): |
|
| @@ 112-131 (lines=20) @@ | ||
| 109 | assert len(set(x1_results)) < len(x1_results) |
|
| 110 | ||
| 111 | ||
| 112 | def test_attributes_results_7(): |
|
| 113 | def objective_function(opt): |
|
| 114 | score = -opt["x1"] * opt["x1"] |
|
| 115 | return score |
|
| 116 | ||
| 117 | search_space = { |
|
| 118 | "x1": list(np.arange(0, 10, 1)), |
|
| 119 | } |
|
| 120 | ||
| 121 | hyper = HillClimbingOptimizer() |
|
| 122 | hyper.add_search( |
|
| 123 | experiment, |
|
| 124 | search_config, |
|
| 125 | n_iter=20, |
|
| 126 | ) |
|
| 127 | hyper.run() |
|
| 128 | ||
| 129 | search_data = hyper.search_data(experiment) |
|
| 130 | with pytest.raises(Exception) as e_info: |
|
| 131 | search_data["eval_times"] |
|
| 132 | ||
| 133 | ||
| 134 | def test_attributes_results_8(): |
|