| @@ 75-95 (lines=21) @@ | ||
| 72 | assert int(len(results) / n_jobs) != len(no_dup) |
|
| 73 | ||
| 74 | ||
| 75 | def test_random_state_n_jobs_2(): |
|
| 76 | n_jobs = 4 |
|
| 77 | ||
| 78 | hyper = HillClimbingOptimizer() |
|
| 79 | hyper.add_search( |
|
| 80 | experiment, |
|
| 81 | search_config, |
|
| 82 | n_iter=5, |
|
| 83 | initialize={"random": 1}, |
|
| 84 | random_state=1, |
|
| 85 | n_jobs=n_jobs, |
|
| 86 | ) |
|
| 87 | hyper.run() |
|
| 88 | ||
| 89 | results = hyper.search_data(experiment) |
|
| 90 | ||
| 91 | no_dup = results.drop_duplicates(subset=list(search_config.keys())) |
|
| 92 | print("no_dup", no_dup) |
|
| 93 | print("results", results) |
|
| 94 | ||
| 95 | assert int(len(results) / n_jobs) != len(no_dup) |
|
| 96 | ||
| 97 | ||
| 98 | def test_random_state_0(): |
|
| @@ 52-72 (lines=21) @@ | ||
| 49 | assert int(len(results) / n_jobs) != len(no_dup) |
|
| 50 | ||
| 51 | ||
| 52 | def test_random_state_n_jobs_1(): |
|
| 53 | n_jobs = 3 |
|
| 54 | ||
| 55 | hyper = HillClimbingOptimizer() |
|
| 56 | hyper.add_search( |
|
| 57 | experiment, |
|
| 58 | search_config, |
|
| 59 | n_iter=5, |
|
| 60 | initialize={"random": 1}, |
|
| 61 | random_state=1, |
|
| 62 | n_jobs=n_jobs, |
|
| 63 | ) |
|
| 64 | hyper.run() |
|
| 65 | ||
| 66 | results = hyper.search_data(experiment) |
|
| 67 | ||
| 68 | no_dup = results.drop_duplicates(subset=list(search_config.keys())) |
|
| 69 | print("no_dup", no_dup) |
|
| 70 | print("results", results) |
|
| 71 | ||
| 72 | assert int(len(results) / n_jobs) != len(no_dup) |
|
| 73 | ||
| 74 | ||
| 75 | def test_random_state_n_jobs_2(): |
|