| @@ 52-67 (lines=16) @@ | ||
| 49 | assert hyper.best_para(experiment)["x1"] in search_config["x1"] |
|
| 50 | ||
| 51 | ||
| 52 | def test_search_space_2(): |
|
| 53 | search_config = SearchConfig( |
|
| 54 | x1=list(np.arange(0, 100, 1)), |
|
| 55 | str1=["0", "1", "2"], |
|
| 56 | ) |
|
| 57 | ||
| 58 | hyper = HillClimbingOptimizer() |
|
| 59 | hyper.add_search( |
|
| 60 | experiment, |
|
| 61 | search_config, |
|
| 62 | n_iter=15, |
|
| 63 | ) |
|
| 64 | hyper.run() |
|
| 65 | ||
| 66 | assert isinstance(hyper.search_data(experiment), pd.DataFrame) |
|
| 67 | assert hyper.best_para(experiment)["str1"] in search_config["str1"] |
|
| 68 | ||
| 69 | ||
| 70 | def test_search_space_3(): |
|
| @@ 35-49 (lines=15) @@ | ||
| 32 | assert hyper.best_para(experiment)["x1"] in search_config["x1"] |
|
| 33 | ||
| 34 | ||
| 35 | def test_search_space_1(): |
|
| 36 | search_config = SearchConfig( |
|
| 37 | x1=list(np.arange(0, 0.003, 0.001)), |
|
| 38 | ) |
|
| 39 | ||
| 40 | hyper = HillClimbingOptimizer() |
|
| 41 | hyper.add_search( |
|
| 42 | experiment, |
|
| 43 | search_config, |
|
| 44 | n_iter=15, |
|
| 45 | ) |
|
| 46 | hyper.run() |
|
| 47 | ||
| 48 | assert isinstance(hyper.search_data(experiment), pd.DataFrame) |
|
| 49 | assert hyper.best_para(experiment)["x1"] in search_config["x1"] |
|
| 50 | ||
| 51 | ||
| 52 | def test_search_space_2(): |
|
| @@ 18-32 (lines=15) @@ | ||
| 15 | experiment = Experiment() |
|
| 16 | ||
| 17 | ||
| 18 | def test_search_space_0(): |
|
| 19 | search_config = SearchConfig( |
|
| 20 | x1=list(np.arange(0, 3, 1)), |
|
| 21 | ) |
|
| 22 | ||
| 23 | hyper = HillClimbingOptimizer() |
|
| 24 | hyper.add_search( |
|
| 25 | experiment, |
|
| 26 | search_config, |
|
| 27 | n_iter=15, |
|
| 28 | ) |
|
| 29 | hyper.run() |
|
| 30 | ||
| 31 | assert isinstance(hyper.search_data(experiment), pd.DataFrame) |
|
| 32 | assert hyper.best_para(experiment)["x1"] in search_config["x1"] |
|
| 33 | ||
| 34 | ||
| 35 | def test_search_space_1(): |
|